POSTSCRIPT"

Software From Adobe

PostScript Language
Document Structuring
Conventions Specification

Adobe Developer Support

Version 3.0

25 September 1992

Adobe Systems Incorporated

Corporate Headquarters

1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400 Main Number

(415) 961-4111 Developer Support
Fax: (415) 961-3769

Adobe Systems Europe B.V.
Europlaza

Hoogoorddreef 54a

1101 BE Amsterdam Z-O, Netherlands
+31-20-6511 200

Fax: +31-20-6511 300

PN LPS5001

Adobe Systems Eastern Region
24 New England

Executive Park

Burlington, MA 01803

(617) 273-2120

Fax: (617) 273-2336

Adobe Systems Japan
Swiss Bank House 7F

4-1-8 Toranomon, Minato-ku
Tokyo 105, Japan
81-3-3437-8950

Fax: 81-3-3437-8968

Copyright[] 1985, 1986, 1987, 1988, 1990 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems Incorpo-
rated unless otherwise stated. The name PostScript also is used as a product trademark for Adobe Sys-
tems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe lllustrator, Tran-
Script, Carta, and Sonata are trademarks of Adobe Systems Incorporated registered in the U.S.A. and
other countries. Adobe Garamond and Lithos are trademarks of Adobe Systems Incorporated. Quick-
Draw and LocalTalk are trademarks and Macintosh and LaserWriter are registered trademarks of
Apple Computer, Inc. FrameMaker is a registered trademark of Frame Technology Corporation. ITC
Stone is a registered trademark of International Typeface Corporation. IBM is a registered trademark
of International Business Machines Corporation. Helvetica, Times, and Palatino are trademarks of
Linotype AG and/or its subsidiaries. Microsoft and MS-DOS are registered trademarks and Windows
is a trademark of Microsoft Corporation. Times New Roman is a registered trademark of The Mono-
type Corporation plc. NeXT is a trademark of NeXT, Inc. Sun-3 is a trademark of Sun Microsystems,
Inc. UNIX is a registered trademark of AT&T Information Systems. X Window System is a trademark

of the Massachusetts Institute of Technology. Other brand or product names are the trademarks or reg-
istered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fithess for particular purposes and noninfringement of third party
rights.

Contents

List of Figures v

PostScript Language Document Structuring Conventions Specification
1

Using the Document Structuring Conventions 4

Document Manager Services 5
Spool Management 5
Resource Management 6
Error Management 7
Print Management 7
Page Management 9

DSC Conformance 11
Conforming Documents 11
Non-Conforming Documents 15

Document Structure Rules 16
Prolog 16
Script 17
Constraints 18
Parsing Rules 22
Convention Categories 23
Comment Syntax Reference 26

General Conventions 32
General Header Comments 32
General Body Comments 38
General Page Comments 46
General Trailer Comments 48

Requirement Conventions 49
Requirement Header Comments 49
Requirement Body Comments 61
Requirement Page Comments 72

Color Separation Conventions 75
Color Header Comments 75
Color Body Comments 76
Color Page Comments 77

Query Conventions 78

iv

Contents

10
11

12

Responsibilities 78
Query Comments 79

Open Structuring Conventions 86
The Extension Mechanism 86

Special Structuring Conventions 88

Changes Since Earlier Versions 89
Changes Since Version 1.0 89
Changes Since Version 2.1 91

DSC Version 3.0 Summary 96
General Conventions 96
Requirement Conventions 97
Color Separation Conventions 98
Query Conventions 98

Appendix: Changes Since Earlier Versions

Index 101

99

(25 Sep 92)

List of Figures

Figure 1 Structure of a conforming PostScript language document 13
Figure 2 Determining the document bounding box 33
Figure 3 Various fold options 58

Vi List of Figures (25 Sep 92)

PostScript Language
Document Structuring
Conventions Specification

As discussed in Chapter 3 of tRestScript Language Reference Manual,
Second Editionthe PostScriptlanguage standard does not specify the over-
all structure of a PostScript language program. Any sequence of tokens con-
forming to the syntax and semantics of the PostScript language is a valid
program that may be presented to a PostScript interpreter for execution.

For a PostScript language program that is a page description (in other words,
a description of a printable document), it is often advantageous to impose an
overall program structure.

A page description can be organized as a prolog and a script, as discussed in
section 2.4.2, “Program Structure” of tRestScript Language Reference
Manual, Second EditioThe prolog contains application-dependent defini-
tions. The script describes the particular desired results in terms of those
definitions. The prolog is written by a programmer, stored in a place accessi-
ble to an application program, and incorporated as a standard preface to each
page description created by the application. The script is usually generated
automatically by an application program.

Beyond this simple convention, this appendix defines a standard set of
document structuring conventions (DSC). Use of the document structuring
conventions not only helps assure that a document is device independent,
it allows PostScript language programs to communicate their document
structure and printing requirementsdiacument manageis a way that

does not affect the PostScript language page description.

A document manager can be thought of as an application that manipulates
the PostScript language document based on the document structuring con-
ventions found in it. In essence, a document manager accepts one or more
PostScript language programs as input, transforms them in some way, and
produces a PostScript language program as output. Examples of document
managers include print spoolers, font and other resource servers, post-
processors, utility programs, and toolkits.

If a PostScript language document properly communicates its structure and
requirements to a document manageran receive certajprinting services

A document manager can offer different types of services to a document. If

the document in question does not conform to the DSC, some or all of these
services may be denied to it.

Specially formatted PostScript language comments communicate the docu-
ment structure to the document manager. Within any PostScript language
document, any occurrence of the charaiteotinside a PostScript language
string introduces aommentThe comment consists of all characters between
the% and the next newline, including regular, special, space, and tab charac-
ters. The scanner ignores comments, treating each one as if it were a single
white-space character. DSC comments, which are legal PostScript language
comments, do not affect the destination interpreter in any manner.

DSC comments are specified by two percent charaéis3 &s the first
characters on a line (no leading white space). These characters are immedi-
ately followed by a unique keyword describing that particular comment—
again, no white space. The keyword always starts with a capital letter and

is almost always mixed-case. For example:

%%BoundingBox: 0 0 612 792
%%Pages: 45
%%BeginSetup

Note that some keywords end with a colon (considered to be part of the
keyword), which signifies that the keyword is further qualified by options or
arguments. There should be one space character between the ending colon
of a keyword and its subsequent arguments.

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

The PostScript language was designed to be inherently device independent.
However, there are specific physical features that an output device may have
that certain PostScript operators activate (in Level 1 implementations many
of these operators are foundsiatusdict). Examples of device-dependent
operators artegal, letter, andsetsoftwareiomode . Use of these operators

can render a documeti¢vice dependenthat is, the document images

properly on one type of device and not on others.

Use of DSC comments such%%BeginFeature:, %%EndFeature (note

that the colon is part of the first comment and that this comment pair is
often referred to a%%Begin(End)Feature) and%%lIncludeFeature: can help
reduce device dependency if a document manager is available to recognize
these comments and act upon them.

The DSC are designed to work wRostScript printer descriptio(PPD)

files, which provide the PostScript language extensions for specific printer
features in a regular parsable format. PPD files include information about
printer-specific features, and include information about the fonts built into
the ROM of each printelhe DSC work in tandem with PPD files to provide
a way to specify and invoke these printer featuresdievéce-independent
manner. For more information about PPD files, se®d&Script Printer
Description Files Specificaticavailable from the Adobe Systems Developers
Association.

Even though the DSC comments are a layer of communication beyond the
PostScript language and do not affect the final output, their use is catider
to be good PostScript language programming style.

1 Using the Document Structuring Conventions

Ideally, a document composition system should be able to compose a dbcumen
regardless of available resources—for example, font availability and paper
sizes. It should be able to rely on the document management system at
printing time to determine the availability of the resources and give the user
reasonable alternatives if those resources are not available.

Realistically, an operating environment may or may not provide a document
management system. Consequently, the DSC contain some redundancy.
There are two philosophically distinct ways a resource or printer-specific
feature might be specified:

» The document composition systémstsits environment to handle the
resource and feature requirements appropriately, and merely specifies
what its particular requirements are.

* The document composer may not know what the network environment
holds or even that one exists, andudesthe necessary resources and
printer-specific PostScript language instructions within the document. In
creating such a document, the document composer delimits these included
resources or instructions in such a way that a document manager can
recognize and manipulate them.

It is up to the software developer to determine which of these methods is
appropriate for a given environment. In some cases, both may be used.

These two methods are mirrored in the DSC comments:

« Many DSC comments provide%Begin and%%End constructs for
identifying resources and printer-specific elements of a document. The
document then prints regardless of whether a document manager is
present or not.

« Many of the requirement conventions provide a mechanism to specify
a need for some resource or printer-specific feature through the use
of %%Include comments, and leave the inclusion of the resource or
invocation of the feature to the document manager. This is an example
of complete network cooperation, where a document can forestall some
printing decisions and pass them to the next layer of document
management. In general, this latter approach is the preferred one.

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

2

21

Document Manager Services

A document manager can provide a wide variety of services. The types of
services are grouped into five management categories: spool, resource, error
print, and page management. The DSC help facilitate these services. A docu-
ment that conforms to this specification can expect to receive any of these
services, if available; one that does not conform may not receive any service.
Listed below are some of the services that belong to each of these categories.

Spool Management

Spooling management services are the most basic services that a document
manager can perform. A category of DSC comments known as general
conventions—specifically the header comments—provide information
concerning the document’s creator, title, pages, and routing information.

Spooling

The basic function of spool management is to deliver the document to the
specified printer or display. The document manager should establish queues
for each device to handle print job fiafin an efective mannergiving many

users access to one device. In addition, the document manager should notify
the user of device status (busy/idle, jammed, out of peyaéting) and queue
status (held, waiting, printing). More advanced document managerdean of
job priorities and delayed-time printing.

Banner and Trailer Pages

As a part of spool management, a document manager can add a banner or
trailer page to the beginning or end, respectjagach print job to separate
the output in the printer bin. The document manager can parse information
from the DSC comments to produce a proper banner that includes the title,
creator, creation date, the number of pages, and routing information of the
document.

Print Logging

If a document manager tracks the number of pages, the type of media used,
and the job requirements for each document, the document manager can pro-
duce a comprehensive report on a regular basis detailing paper and printer
usage. This can help a systems administrator plan paper purchases and esti-
mate printing costs. Individual reports for users can serve as a way to bill
internally for printing.

2 Document Manager Services 5

2.2 Resource Management

Resource management services deal with the inclusion, caching, and manipu-
lation of resources, such as fonts, forms, files, patterns, and documents. A
category of DSC comments, known as requirement conventions, enables a
document manager to properly identify instances in the document when
resources are either needed or supplied.

Resource Inclusion

Frequently used resources, such as company logos, copyright notices, special
fonts, and standard forms, can take up vast amounts of storage space if they
are duplicated in a large number of documents. The DSC support special
%%Include comments so a document manager can include a resource at print
time, saving disk space.

Supplied resources can be cached in a resource library for later use. For
example, a document manager that identifies a frequently used logo while
processing a page description subsequently stores the logo in a resource
library. The document manager then prints the document normally. When
future %%IncludeResource: comments are found in succeeding documents,
the document manager retrieves the PostScript language program for the
logo from the resource library. The program is inserted into the document at
the position indicated by the DSC comment before the document is sent to
the printer.

Resource Downloading

Another valuable service that a document manager can provide is automati-
cally downloading frequently used resources to specific printers so those
resources are available instantly. Transmission and print time of documents
can be greatly reduced by using this service.

For example, the document manager judges tha&ttine-Serif font program

is a frequently used resource. It downloads the font program from the
resource library to the printer. Later, the document manager receives a
document that requests thne-Serif font program. The document manager
knows this resource is already available in the printer and sends the document
to the printer without modification. Note that the resource can be downloaded
persistently into VM or onto a hard disk if the printer has one. For Level 2
interpreters, resources are found automatically bfinttiesource operator

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

2.3

2.4

Resource Optimization

An intelligent document manager can alter the position of included resources
within a document to optimize memory and/or resource usage. For example,
if an encapsulated PostScript (EPS) file is included several times in a
document, the document manager can move duplicatedure set defini-

tions (procsets) to the top of the document to reduce transmission time. If

a document manager performs dynamic resource positioning, it must main-
tain the relative order of the resources to preserve any interdependencies
among them.

Error Management

A document manager can provide advanced error reporting and recovery
services. By downloading a special error handler to the prthieedocument
manager can detect failed print jobs and isolate error-producing lines of
PostScript language instructions. It can send this information, a descriptive
error message, and suggestions for solution back to the user.

There may be other instances where a document manager can recover from
certain types of errors. Resource substitution services can be offered to the

user. For example, if your document requeststhee-Serif font program

and this font program is not available on the printer or in the resource library

a document manager could select a similar font for substitution.

Print Management

Good print management ensures that the requested printer can fulfill the
requirements of a particular document. This is a superset of the spool
management spooling function, which is concerned with delivering the print
job to the printer regardless of the consequences. By understanding the
capabilities of a device and the requirements of a document, a document
manager can provide a wide variety of print management services.

Printer Rerouting

A document manager can reroute documents based on printer availability.
Heavily loaded printers can have their print jobs off-loaded to different
printers in the network. The document manager can also inform a user if a
printer is busy and suggest an idle printer for use as a backup.

2 Document Manager Services 7

If a specified printer cannot meet the requirements of a document (if for
example, the document requests duplex printing and the printer does not
support this feature), the document manager can suggest alternate printers.

For example, a user realizes that a document to be printed on a monochrome
printer contains a color page. The user informs the document manager

that the document should be rerouted to the color printer. Any printer-
specific portions are detected by the document manager via the
%%Begin(End)Feature: comments. The document manager consults the
appropriate PostScript printer description (PPD) file, the printer-specific
portion is replaced in the document, and the document is rerouted to the
appropriate queue.

Feature Inclusion

This service is similar in concept to resource inclusion. Instead of using
PostScript language instructions that activate certain features of a target
printer, an application can use #@olincludeFeature: comment to specify

that a fragment of feature instructions should be included in the document
at a specific point. A document manager can recognize such a request,
consult the PPD file for the target printer, look for the specified feature, and
insert the code into the document before sending it to the printer.

Parallel Printing

Parallel printing, another possible feature of a document manager, is
especially useful for lge documents or rush orders. Basicdhg document
manager splits the document based orvttPage: comment, sending
different pieces of the document to different printers simultaneously. The
document is printed in parallel.

For example, a user requests that the first 100 pages of a document be
printed in parallel on five separate printers. The document manager splits

the document into five sections of 20 pages each, replicating the original
prolog and document setup for each section. Also, a banner page is specified
for each section to identify the pages being printed.

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

2.5

Page Breakout

Color and high-resolution printing are often expensive propositions. It does
not make sense to send an entire document to a color printer if the document
contains only one color illustration. When the appropriate comments are

used, document managers can detect color illustrations and detailed drawings
that need to be printed on high resolution printers, and split them from the
original document. The document manager sends these pages separately to a
high-resolution or color printer, while sending the rest of the document to
lower-cost monochrome printers.

Page Management

Page management deals withamizing and reganizing individual pages in
the document. A category of comments knowpage comment@&cilitate
these services. See section 4.5, “Convention Categories,” for a thorough
description of page-level comments.

Page Reversal

Some printers place output in the tray face-up, some face-down. This small
distinction can be a nuisance to users who have to reshuffle output into the
correct order. Documents that come out of the printer into a face-up tray
should be printed last page first; conversely, documents that end up face-
down should be printed first page first. A document manager can reorder
pages within the document based on%9ePage: comment to produce

either of these effects.

n-Up Printing

n-up, thumbnail, and signature printing all fall under this category. This
enables the user to produce a document that has muitipial pages on
fewerphysicalpages. This is especially useful when proofing documents,
and requires less paper.

For example, suppose a user wants a proof of the first four pages of a docu-
ment (two copies, because the user’s manager is also interested). Two-up
printing is specified, where two virtual pages are mapped onto one physical
sheet. The document manager adds PostScript language instructions (usually
to the document setup section) that will implement this service.

2 Document Manager Services 9

10

Range Printing

Range printing is useful when documents need not be printed in their entirety
A document manager can isolate the desired pages from the document (using
the%%Page: comment and preserving the prolog and document setup)
before sending the new document to the printer. In the previous example,

the user may want only the first four pages of the document. The document
manager determines where the first four pages of the document reside and
discards the rest.

Collated Printing

When using theétcopies or setpagedevice features to specify multiple
copies, on some printers the pages of the document emerge uncollated
(1-1-1-2-2-2-3-3-3). Using the same mechanics as those for range printing,
a document manager can print a group of pages multiple times and obtain
collated output (1-2-3-1-2-3-1-2-3), saving the user the frustration of hand
collating the document.

Underlays

Underlays are text and graphic elements, such as draft and confidential
notices, headers, and images, that a document manager can add to a
document so they appear on every page. By adding PostScript language
instructions to the document setup, each page of the document renders
the underlay before drawing the page itself.

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

3

Note

3.1

DSC Conformance

The PostScript interpreter does not distinguish between PostScript language
page descriptions that do or do not conform to the DSC. However, the struc-
tural information communicated through DSC comments is of considerable
importance to document managers that operate on PostScript page descrip-
tions as data. Because document managers cannot usually interpret the
PostScript language directly, they must rely on the DSC comments to
properly manipulate the document. It is necessary to distinguish between
those documents that conform to the DSC and those that do not.

In previous versions of the DSC, thevee refeences to partially conformin
documents. This term has caused some confusion and its use has been
discontinued. A document either conforms to the conventions or it does not.

Conforming Documents

A conformingdocument can expect to receive the maximum amount of
services from any document manageconforming document is recognized
by the header commetttiPS-Adobe-3.0 and is optionally followed by
keywords indicating the type of document. Please see the description of
this comment in section 5, “General Conventions,” for more details about
optional keywords.

A fully conforming document is one that adheres to the following rules
regarding syntax and semantics, document structure, and the compliance
constraints. It is also strongly suggested that documents support certain
printing services.

Syntax and Semantics

If a comment is to be used within a document, it must follow the syntactical
and semantic rules laid out in this specification for that comment.

Consider the followingncorrectexample:
%%BoundingBox 43.22 50.45 100.60 143.49

This comment is incorrect on two counts. First, there is a colon missing from
the %%BoundingBox: comment. Abbreviations for comments are not accept-
able. Second, floating point arguments are used instead of the integer argu-
ments this comment requires.

3 DSC Conformance 11

Document Structure

The document structure rules described in section 4, “Document Structure
Rules,” must be followed. The following comments delineate the structure
of the document. If there is a section of a document that corresponds to a
particular comment, that commeantstbe used to identify that section of

the document.

%!PS-Adobe-3.0
%%Pages:
%%EndComments
%%BeginProlog
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page:
%%BeginPageSetup
%%EndPageSetup
%%PageTrailer
%% Trailer
%%EOF

For example, if there are distinct independent pages in a document, the
%%Page: comment must be used at the beginning of each page to identify
those pages.

Where sections of the structure are not applicable, those sections and

their associated comments need not appear in the document. For example,
if a document setup is not performed inside a particular document, the
%%BeginSetup and%%EndSetup comments are unnecessary. Figure 1
illustrates the structure of a conforming PostScript language document.

12 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Figure 1 Structure of a conforming PostScript language document

%!PS-Adobe-3.0
...DSC comments only... Header
%%EndComments

%%BeginProlog

%%BeginResource: procsetname;
...PostScript code and DSC comments.|.
%%EndResource

Prolog

. Procedure
. Definitions

%%BeginResource: procsetname,
...PostScript code and DSC comments.|.
%%EndResource
%%EndProlog

%%BeginSetup
Document

...PostScript code and DSC comments.|.
Setup

%%EndSetup

%%Page: label ordinal;
...DSC comments only...
%%BeginPageSetup

...PostScript code and DSC comments.|.
%%EndPageSetup
...PostScript code and DSC comments.|.
%%PageTrailer

...PostScript code and DSC comments.|.

Script N
N Pages

%%Page: label, ordinal,
...DSC comments only...
%%BeginPageSetup

...PostScript code and DSC comments.|.
%%EndPageSetup
...PostScript code and DSC comments.|.
%%PageTrailer
...PostScript code and DSC comments.|.

%%Trailer Document

...PostScript code and DSC comments.). Trailer

Compliance Constraints

The compliance constraints described in section 4.3, “Constraints,” including
the proper use of restricted operatonsistbe adhered to.

3 DSC Conformance 13

Printing Services

There are document manager printing services (such as those described in
section 2, “Document Manager Services”) that can be easily supported and
add value to an application. Although it is not a requirement of a conforming
document, it istrongly suggestethat applications support these services by
using the comments listed beloMote that 20 comments will ensure support

of all services.

Spool Management

(Spooling, Banner and Trailer Pages, and Print Logging)

%%Creator:

%%CreationDate:
%%DocumentMedia:
%%DocumentPrinterRequired:
%%For:

Resource Management

%%PageMedia:
%%PageRequirements:
%%Requirements:
%%Routing:

%%Title:

(Resource Inclusion, Downloading, and Optimization)

%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%PageResources:

Error Management

(Error Reporting and Recovery)

%%Extensions:
%%LanguageLevel:

Printer Management

%%lIncludeResource:
%%Begin(End)Resource:

%%ProofMode:

(Printer Rerouting, Feature Inclusion, Parallel Printing, Color Breakout)

%%Begin(End)Feature:
%%Begin(End)Resource:
%%DocumentMedia:
%%DocumentNeededResources:
%%DocumentPrinterRequired:
%%DocumentSuppliedResources:
%%Extensions:

Page Management

%%lIncludeFeature:
%%IncludeResource:
%%LanguageLevel:
%%PageMedia:
%%PageRequirements:
%%PageResources:
%%Requirements:

(Page Reversal, N-up Printing, Range Printing, Collation, Underlays)

%%Pages:
%%EndComments
%%Begin(End)Setup
%%Begin(End)Prolog

PostScript Language Document Structuring Conventions Specification

%%Page:
%%Begin(End)PageSetup
%%PageTrailer
%%Trailer

(25 Sep 92)

3.2 Non-Conforming Documents

A non-conforminglocument most likely will not receive any services from a
document manager, may not be able to be included into another document,
and may not be portable. In some cases, this may be appropriate; a PostScript
language program may require an organization that is incompatible with

the DSC. This is especially true of very sophisticated page descriptions
composed directly by a programmer.

However, for page descriptions that applications generate automatically,
adherence to the structuring conventions is strongly recommended, simple to
achieve, and essential in achieving a transparent corporate printing network.

A non-conforming document is recognized by %icheader comment.
Underno circumstances should a non-conforming document use the
%!PS-Adobe-3.0 header comment.

3 DSC Conformance 15

16

4

4.1

Document Structure Rules

One of the most important levels of document structuring in the PostScript
language is the distinction between tleeument prolognd thedocument
script. Theprolog is typically a set of procedure definitions appropriate for
the set of operations a document composition system needs, acdphis

the software-generated program that represents a particular document.

A conformingPostScript language document description must have a clearly
defined prolog and script separated by%#%EndProlog comment.

Prolog

The prolog consists of a header section, an optional defaults subsection, and
the prolog proper, sometimes known as the procedures section.

Theheader sectioonsists of DSC comments only and describes the
environment that is necessary for the document to be output properly.

The end of the header section is denoted bya#&ndComments comment

(see the note on header comments in section 4.5, “Convention Categories”).

Thedefaults sectioiis an optional section that is used to save space in the
document and as an aid to the document manager. The beginning of this
section is denoted by th&%BeginDefaults comment. Only DSC page
comments should appear in the defaults section. Information on the page-
level comments that are applicable and examples of their use can be found
in section 5.2, “General Body Comments” under the definition of
%%Begin(End)Defaults. The end of the defaults section is indicated by the
%%EndDefaults comment.

The beginning of therocedures sectiois indicated by thés%BeginProlog
comment. This section is a series of procedure set (procset) definitions;
each procset is enclosed betweeén%%BeginResource: procset and
%%EndResource pair. Procsets are groups of definitions and routines
appropriate for different imaging requirements.

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

4.2

The prolog has the following restrictions:

» Executing the prolog should define procsets only. For example, these
procsets can consist of abbreviations, generic routines for drawing
graphics objects, and routines for managing text and images.

» A document-producing application should almost always use the same
prolog for all of its documents, or at least the prolog should be drawn from
a pool of common procedure sets. The prolog should always be
constructed in a way that it can be removed from the document and
downloaded only once into the printer. All subsequent documents that are
downloaded with this prolog stripped out should still execute correctly.

* No output can be produced while executing the prolog, no changes can be
made to the graphics state, and no marks should be made on the page.

Script

The documenscript consists of three sections: a document setup section,
page sections, and a document trailer.

* Thedocument setupection is denoted by th&%Begin(End)Setup
comments. The document setup should consist of procedure calls for
invoking media selections (for example, setting page size), running
initialization routines for procsets, downloading a font or other resource,
or setting some aspect of the graphics state. This section should appear
after the%e%EndProlog comment, but before the firgi%Page: comment.

» Thepagessection of the script consists of 1In@ages, each of which
should beunctionally independerdf the other pages. This means that
each page should be able to execute in any order and may be physically
rearranged, resulting in an identical document as long as the information
within it is the same, but with the physical pages ordered differently. A
typical example of this page reordering occurs during a page-reversal
operation performed by a document manager.

The start of each page is denoted byotldePage: comment and can also
contain &%Begin(End)PageSetup section (analogous to the document
setup section on a page level), and an opti#saPageTrailer section

(similar to the document trailer). In any event, each page will contain
between the setup and the trailer sections the PostScript language program
necessary to mark that page.

4 Document Structure Rules 17

» Thedocument traileisection is indicated by the%Trailer comment.
PostScript language instructions in the trailer consists of calls to
termination routines of procedures and post-processing or cleanup
instructions. In addition, any header comments that were deferred using
the(atend) notation will be found here. See section 4.6, “Comment Syntax
Reference,” for a detailed description(atend).

There are generally few restrictions on the script. It can have definitions like
the prolog and it can also modify the graphics environment, draw marks on
the page, issushowpage , and so on. There are some PostScript language
operators that should be avoided or at least used with extreme caution. A
thorough discussion of these operators can be found in Appendix | of the
PostScript Language Reference Manual, Second Edition

The end of a document should be signified bytheEOF comment.

4.3 Constraints

There are several constraints on the use of PostScript language operators in a
conforming document. These constraints are detailed below and are not only
applicable to documents that conform to the DSC. Evenaconforming
document is much more portable across different PostScript interpreters if it
observes these constraints.

Page Independence

Pages should not haaay inter-dependencies. Each page may rely on

certain PostScript language operations defined in the document prolog or in
the document setup section, but it is not acceptable to have any graphics state
set in one page of a document on which another page in the same document
relies on. It is also risky to reimpose or rely on a state defined in the docu-
ment setup section; the graphics state should only be added to or modified,
not reimposed. See Appendix | of tRestScript Language Reference

Manual, Second Editiofor more details on proper preservation of the

graphics state with operators ligettransfer .

Page independence enables a document manager to rearrange the d@cument’
pages physically without fafcting the execution of the document description.
Other benefits of page independence include the ability to print different
pages in parallel on more than one printer and to print ranges of pages.

Also, PostScript language previewers need page independence to enable
viewing the pages of a document in arbitrary order.

18 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

For the most part, page independence can be achieved by placing a
save-restore pair around each page, as shown below:

%!PS-Adobe-3.0

...Header comments, prolog definitions, document
setup...

%%Page: cover 1

%%BeginPageSetup

/pgsave save def

...PostScript language instructions to perform page
setup...

%%EndPageSetup

...PostScript language instructions to mark page 1...
pgsave restore

showpage

...Rest of the document...

%%EOF

Thesave-restore pair will also reclaim any non-global VM used during the
page marking (for example, text strings).

If pages must have interdependenciesyth@ageOrder: Special comment
should be used. This ensures that a document manager will not attempt to
reorder the pages.

Line Length

To provide compatibility with a large body of existing application and
document manager software, a conforming PostScript language document
descriptiondoes nohave lines exceeding 255 characters, excluding line-
termination characters. The intent is to be able to read lines into a
255-character buffer without overflow (Pascal strings are a common
example of this sort of buffer).

The PostScript interpreter imposes no constraints as to where line breaks
occur, even in string bodies and hexadecimal bitmap representations. This
level of conformance should not pose a problem for software development.
Any document structuring comment that needs to be continued on another
line to avoid violating this guideline should use ##+ notation to indicate
that a comment line is being continued (&&¢+ in section 5.2, “General

Body Comments”).

Line Endings

Linesmustbe terminated with one of the following combinations of
characters: CR, LF, or CR LF. CR is the carriage-return character and LF
is the line-feed character (decimal ASCII 13 and 10, respectively).

4 Document Structure Rules 19

Use of showpage

To reduce the amount of VM used at any point, it is common practice to

delimit PostScript language instructions used for a particular page with a
save-restore pair. See the page-independence constraint for an example
of save-restore use.

If the showpage operator is used in combination witlive andrestore ,
theshowpage should occuafterthe page-levekestore operation. The
motivation for this is to redefine tbowpage operator so it has side
effects in the printer VM, such as maintaining page counts for prining
copies on one sheet of papéshowpage is executed within the confines of
a page-levetave -restore , attempts to redefirghowpage to perform extra
operations will not work as intended. This also applies tB#aePage and
EndPage parameters of theetpagedevice dictionary The above discussion
also applies tgsave -grestore pairs.

Document Copies

In a conforming document, the number of coprestbe modified in theloc-
ument setup section of the document geeBeginSetup and%%EndSetup).
Changing the number of copies within a single page automatically breaks the
page independence constraint. Also, using:tipgpage operator is not
recommended because doing so inhibits page independence. If multiple
copies of a document are desired, usettbeies key or thesetpagedevice
operator.

In Level 1 implementations, theopies key can be modified to produce
multiple copies of a document as follows:

%!PS-Adobe-3.0

%%Pages: 23

%%Requirements: numcopies(3) collate
%%EndComments

...Prolog with procset definitions...
%%EndProlog

%%BeginSetup

[#copies 3 def

%%EndSetup

...Rest of the Document (23 virtual pages)...
%%EOF

20 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

In Level 2 implementations, the number of copies of a document can be set
using thesetpagedevice operator as follows:

<< /NumCopies 3 >> setpagedevice

The%%Pages: comment should not be modified if the number of copies is
set, as it represents the number of unique virtual pages in the document.
However the%%Requirements: comment should have itsimcopies option
modified, and theollate option set, if applicable.

Restricted Operators

There are several PostScript language operators intended for system-level
jobs that are not appropriate in the context of a page description program.
Also, there are operators that impose conditions on the graphics state directly
instead of modifying or concatenating to the existing graphics state. How-
ever, improper use of these operators may cause a document manager to
process a document incorrectly. The risks of using these operators involve
either rendering a document device dependent or unnecessarily inhibiting
constructive post-processing of document files for different printing needs—
for example, embedding one PostScript language document within another.

In addition to all operators statusdict and the operators irserdict for
establishing an imageable area, the following operators should be used
carefully, or not at all, in a PostScript language page description:

banddevice framedevice quit setpagedevice
clear grestoreall renderbands setscreen
cleardictstack initclip setglobal setshared
copypage initgraphics setgstate settransfer
erasepage initmatrix sethalftone startjob
exitserver nulldevice setmatrix undefinefont

For more specific information on the proper use of these operators in various
situations, see Appendix | of tiestScript Language Reference Manual,
Second Edition

There are certain operators specific to the Display PostScript system that are
not part of the Level 1 and Level 2 implementations. These operators are for
display systems only amdust notbe used in a document. This is a much

more stringent restriction than the above list of restricted operators, which
may be used with extreme care. For a complete list see section A.1.2,
“Display PostScript Operators, of tRestScript Language Reference

Manual, Second Editioh

4 Document Structure Rules 21

4.4 Parsing Rules

Here are a few explicit rules that can help a document manager parse the
DSC comments:

 Inthe interest of forward compatibility, any comments that are not
recognized by the parser should be ignored. Backward compatibility is
sometimes difficult, and it may be helpful to develop an “upgrading
parser” that will read in documents conforming to older versions of the
DSC and write out DSC version 3.0 conforming documents.

» Many comments have a colon separating the comment keyword from
its arguments. This colon is not present in all comment keywords (for
example %%EndProlog) and should be considered part of the keyword
for parsing purposes. It i®tan optional character.

« Comments with arguments (like%Page:) should have a space
separating the colon from the first argument. Due to existing software,
this space must be considered optional.

» “White space” characters within comments may be either spaces or tabs
(decimal ASCII 32 and 9, respectively).

» Comment keywords are case-sensitive, as are all of the arguments
following a comment keyword.

» The character set for comment keywords is limited to printable ASCII
characters. The keywords only contain alphabetic characters and the :, !,
and ? characters. The arguments may include any character valid in the
PostScript language character set, especially where procedure names,
font names, and strings are represented. See the definitioneéthe
elementary type for the use of the \ escape mechanism.

* When looking for thés%Trailer comment (or anyatend) comments),
allow for nested documents. Obse#&BeginDocument: and
%%EndDocument comments as well @%BeginData: and%%EndData.

* In the case of multiple header comments filsecomment encountered is
considered to be the truth. In the case of multiigléer comments (those
comments that were deferred using {ttend) convention), the last
comment encountered is considered to be the truth. For example, if there
are two%%Requirements: comments in the header of a document, use the
first one encountered.

» Header comments can be terminated explicitly by an instance of
%%EndComments, or implicitly by any line that does not begin withx,
whereX is any printable character except space, tab, or newline.

22 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

4.5

» The order of some comments in the document is significant, but in a
section of the document they may appear in any ofderexample, in the
header sectiop%DocumentResources:, %%Title:, and%%Creator: may
appear in any order.

» Lines must never exceed 255 characters, and line endings should follow
the line ending restrictions set forth in section 4.3, “Constraints.”

 |f a document manager supports resource or feature inclusion, at print time
it should replac&c%Include comments with the resource or feature
requested. This resource or feature code should be encapsulated in
%%Begin and%%End comments upon inclusion. If a document manager
performs resource library extraction, any resources that are removed,
including their associated%Begin and%%End comments, should be
replaced by equivalegt%include comments.

Convention Categories

The DSC comments are roughly divided into the followingsix categories of
conventions:

» General conventions

* Requirement conventions

» Color separation conventions
* Query conventions

» Open structuring conventions
» Special conventions

Typically, some subsets of the general, requirement, and color separation
conventions are used consistently in a particular printing environment. The
DSC have been designed with maximum flexibility in mind and with a mini-
mum amount of interdependency between conventions. For example, one
may use only general conventions in an environment where the presence of a
document manager may not be guaranteed, or may use the requirement con-
ventions on a highly spooled network.

General conventiongelimit the various structural components of a PostScrip
language page description, including its prolog, script, and traildrwhere

the page breaks fall, if there are any. The general convention comments
include document and page setup information, and they provide a markup
convention for noting the beginning and end of particular pieces of the page
description that might need to be identified for further use.

4 Document Structure Rules 23

Requirement conventioase comments that suggest document manager
action. These comments can be used to specify resources the document sup-
plies or needs. Document managers may make decisions based on resource
frequency (those that are frequently used) and load resources permanently
into the printer, download them before the job, or store them on a printer’s
hard disk, thus reducing transmission time.

Other requirement comments invoke or delimit printer-specific features and
requirements, such as paper colors and weights, collating ardestapling.
The document manager can replace printer-specific PostScript language
fragments based on these comments when rerouting a print job to another
printer, by using information in the PostScript printer description (PPD) file
for that printer.

Color separation conventiormge used to complement the color extensions to
the PostScript language. Comments typically identify PostScript language
color separation segments in a page, note custom color ratios (RGB or
CMYK), and list document and page level color use.

Query conventiondelimit parts of a PostScript language program that query
the current state or characteristics of a printer, including the availability of
resources (for example, fonts, files, procsets), VM, and any printer-specific
features and enhancements. The type of program that uses this set of conven-
tions is usually interactive—that is, one that expects a response from the
printer. This implies that document managers should be able to send query
jobs to a printer, and route an answer back to the application that issued the
guery. Query conventions should only be usew!inS-Adobe-3.0 Query

jobs.

Open structuring conventiomse useidefined conventions. Section 9, “Open
Structuring Conventions,” provides guidelines for creating these vendor-
specific comments

Special conventionsclude those comments that do not fall into the above
categories.

The general, requirement, and color separation conventions can be further
broken down into three classes: header comments, body comments, and
page comments.

24 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Header Comments

Header comments appear first in a document file, before any of the executabl
PostScript language instructions and before the procedure definitions.

They may be thought of as a table of contents. In order to simplify a docu-
ment manager’s job in parsing these header comments, there are two rules
that apply:

« If there is more than one instance of a header comment in a document
file, the first one encountered takes precedemhes simplifies nesting
documents within one another without having to remove the header
comments.

» Header comments must be contigudsat is, if a document manager
comes across a line that does not begin Witthe document manager
may quit parsing for header comments. The comments may also be ended
explicitly with the%%EndComments convention.

All instances of lines beginning with! after the first instancare ignored by
document managers, although to avoid confusion, this notation should not
appear twice within the block of header comments ¥g#8eginDocument:
and%%EndDocument for examples of embedded documents).

Body Comments

Body comments may appear anywhere in a document, except the header sec-
tion. They are designed to provide structural information about the organiza-
tion of the document file and should match any related information provided

in the header comments section. They generally congisva@egin and

%%End constructs to delimit specific components of the document file, such
as procsets, fonts, or emulation code, @tinclude comments that request

the document manager to take action when encountering the comment, such
as including a document, resource, or printer-specific fragment of code.

4 Document Structure Rules 25

Page Comments

Page comments are page-level structure comments. They should not span
across page boundaries (see the exception below). That is, a page comment
applies only to the page in which it appears. The beginning of a page should
be noted by thes%Page: comment. The other page comments are similar to
their corresponding header comments (for exanmyg#éBoundingBox: Vs.
%%PageBoundingBox:), except foe%Begin or %%End comments that are
more similar to body comments in use (exf4Begin(End)Setup Vs.
%%Begin(End)PageSetup).

Note Some page comments that are similar to header comments can be used in
the defaults section of the file to denote default requirements or media for
all pages. See th®%Begin(End)Defaults comments for a more detailed
explanation.

4.6 Comment Syntax Reference

Before describing the DSC comments, it is prudent to specify the syntax
with which they are documented. This section introduces a syntax known as
Backus-Naur form (BNF) that helps eliminate syntactical ambiguities and
helps comprehend the comment definitions. A brief explanation of the BNF
operators is given in Table 1. The following section discusses elementary
types, which are used to specify the keywords and options of the DSC
comments.

Table 1 Explanation of BNF operators

BNF Operator Explanation

<token> This indicates a token item. This item may comprise
other tokens or it may be an elementary type (see
below).

= Literally means “is defined as.”

[expression | This indicates that the expression inside the brackets is
optional.
{ expression'} The braces are used to group expressions or tokens into

single expressions. It is often used to denote parsing
order (it turns the expression inside the braces into a
single token).

<token> ... The ellipsis indicates that one or more instances of
<token> can be specified.

| The| character literally means “or” and delimits alter-
native expressions.

26 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Elementary Types

An elementanyor basetype is a terminating expression. That is, it does not
reference any other tokens and is considered to be a base on which other
expressions are built. For the sake of clarity, these base types are defined
here in simple English, without the exhaustive dissection that BNF normally
requires.

(atend)

Some of the header and page comments can be deferred until the end of the
file (that is, to th&o%Trailer section) or to the end of a page (that is, the
%%PageTrailer section). This is for the benefit of application programs that
generate page descriptions on-the-fly. Such applications might not have the
necessary information about fonts, page count, and so on at the beginning of
generating a page description, but have them at the end. If a particular com-
ment is to be deferred, it must be listed in the header section wead)

for its argument list. A comment with the same keyword and its appropriate
argumentsnustappear in théc%Trailer or %%PageTrailer sections of the
document.

The following comments support tketend) convention:

%%BoundingBox: %%DocumentSuppliedProcSets:
%%DocumentCustomColors: %%DocumentSuppliedResources:
%%DocumentFiles: %%0Orientation:
%%DocumentFonts: %%Pages:
%%DocumentNeededFiles: %%PageBoundingBox:
%%DocumentNeededFonts: %%PageCustomColors:

%%DocumentNeededProcSets: %%PageFiles:
%%DocumentNeededResources: %%PageFonts:

%%DocumentProcSets: %%PageOrder:
%%DocumentProcessColors: %%PageOrientation:
%%DocumentSuppliedFiles: %%PageProcessColors:
%%DocumentSuppliedFonts: %%PageResources:

Note Page-level comments specified in the defaults section of the document cannot

use thgatend) syntax to defer definition of theirgarments(atend) can only
be used in the header section and within individual pages.

4 Document Structure Rules 27

In Example 1, the bounding box information is deferred until the end of the
document:

Example 1

%!PS-Adobe-3.0

...Document header comments...
%%BoundingBox: (atend)
%%EndComments

...Rest of the document...
%%Trailer

%%BoundingBox: 0 0 157 233
...Document clean up...

%%EQOF

<filename>

A filenameis similar to the<text> elementary type in that it can comprise
any printable character. It is usually very operating system specific. The
following example comment lists four different files:

%%DocumentNeededResources: file /usr/smith/myfile.epsf
%%+ file (Corporate Logo \O42large size\042) (This is (yet) another file)
%%+ file C:\LIB\LOGO.EPS

Note that the backslash escape mechanism is only supported inside parenthe-
ses. It can also be very convenient to list files on separate lines using the
continuation commers%-+.

<fontname>

A fontnameis a variation of the simple text string (sgext>). Because font
names cannot include blanks, font names are considered to be delimited by
blanks. In addition, the \ escape mechanism is not supported. The following
example comment uses five font names:

%%DocumentNeededResources: font Times-Roman Palatino-Bold
%%+ font Helvetica Helvetica-Bold NewCenturySchoolbook-Italic

The font name does not start with a slash charagtes {t does in the
PostScript language when you are specifying the font name as a literal.

<formname>

A formnames the PostScript language object name of the form as used by
thedefineresource operatorlt is a simple text string as defined by thext>
elementary type.

<int>

An integeris a non-fractional number that may be signed or unsigned. There
are practical limitations for an integer’s maximum and minimum values (see
Appendix B of thePostScript Language Reference Manual, Second E}lition

28 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

<procname> ::= <name> <version> <revision>

<name> ::= <text>

<version> ::= <real>

<revision> ::= <uint>
A procnameoken describes a procedure set (procset), which is a block of
PostScript language definitions. A procset is labeled by a text string describ-
ing its contents and a version numhkfprocset/ersionmay undego several
revisions, which is indicated by tihevisionnumber. Procset names should
be descriptive and meaningful. It is also suggested that the corporate name
and application name be used as part of the procset name to reduce conflicts,
as in this example:

(MyCorp MyApp - Graphic Objects) 1.1 0
Adobe-lllustrator-Prolog 2.0 1

The name, version, andrevision fields should uniquely identify the procset. If
a version numbering scheme is not used, these fields should still be filled with
a dummy value of 0.

The revision field should be taken to be upwardly compatible with procsets of
the sameversion number That is, ifmyprocs 1.0 0 is requested, thenyprocs

1.0 2 should be compatible, although the converse (backward compatibility)
is not necessarily true. If thevision field is not present, a procset may be
substituted as long as thersion numbers are equal. Different versions of a
procset may not be upwardly compatible and should not be substituted.

<patternname>

A patternnamas the PostScript language object name of the pattern as used
by thedefineresource operator. It is a simple text string as defined by the
<text> elementary type.

<real>

A real number is a fractional number that may be signed or unsigned. There
are practical limitations on the maximum size of a real (see Appendix B of
thePostScript Language Reference Manual, Second EjifReal numbers

may or may not include a decimal point, and exponentiation using either an
‘E’ or an ‘e’ is allowed. For example,

-.002 345 -3.62 123.6el0 1E-5 -1. 0.0

are all valid real numbers.

4 Document Structure Rules 29

<resource> ::= font <fontname> | file <filename> |

procset <procname> | pattern <patternname> |

form <formname> | encoding <vectorname>
<resources> ::=font <fontname> ... | file <filename> ... |

procset <procname> ... | pattern <patternname> ... |

form <formname> ... | encoding <vectorname> ...
A resouceis a PostScript object, referenced by name, that may or may not be
available to the system at any given tiffiemes-Roman is the name of a
commonly available resource. The name of the resource should be the same
as the name of the PostScript object—in other words, the same name used
when using theefineresource operator.

Note Although files a& not esouces in the PostScript language sense, they can be
thought of as a resource when document managers are dealing with them.

<text>

A text stringcomprises any printable characters and is usually considered to
be delimited by blanks. If blanks or special characters are desired inside the
text string, the entire string should be enclosed in parentheses. Document
managers parsing text strings should be prepared to handle multiple parenthe-
ses. Special characters can be denoted using the PostScript language string
escape mechanism.

The following are examples of valid DSC text strings:

Thisisatextstring

(This is a text string with spaces)

(This is a text string (with parentheses))

(This is a special character \262 using the \\ mechanism)

It is a good idea to enclose numbers that should be treated as text strings in
parentheses to avoid confusion. For example, use (1040) instead of 1040.

The sequence () denotes an empty string.

Note that a text string must obey the 255 character line limit as set forth in
section 3, “DSC Conformance.”

<textline>

This is a modified version of thaext> elementary type. If the first character
encountered is a left parenthesis, it is equivalenkte> string. If not, the

token is considered to be the rest of the characters on the line until end of line
is reached (some combination of the CR and LF characters).

30 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

<uint>

An unsigned integeis a non-fractional number that has no sign. There are
practical limitations for an unsigned integer’s maximum value, but as a
default it should be able to range between 0 and twice the largest integer
value given in Appendix B of thRostScript Language Reference Manual,
Second Edition

<vectorname>

A vectornamealenotes the name of a particular encoding vector and is also a
simple text string. It should have the same name as the encoding vector the
PostScript language program uses. Examples of encoding vector names are
StandardEncoding andISOLatin1Encoding .

4 Document Structure Rules 31

5 General Conventions

The general conventions are the most basic of all the comments. They impart
general information, such as the bounding box, language level, extension
usage, orientation, title of the document, and other basics. There are com-
ments that are used to impart structural information (end of header, setup,
page breaks, page setup, page trailer, trailer) that are the keys to abiding by
the document structure rules of 3, “DSC Conformance.” Other general com-
ments are used to identify special sections of the document, including binary
and emulation data, bitmap previews, and page level objects.

5.1 General Header Comments

%!PS-Adobe-3.0 <keyword>
<keyword> ::= EPSF-3.0 | Query | ExitServer | Resource-<restype>
<restype> ::= Font | File | ProcSet | Pattern | Form | Encoding

This comment differs from the previo4gPS-Adobe-2.1 comment only in
version number. It indicates that the PostScript language page description
fully conforms to the DSC version 3.0. This comment must occur dsgshe
line of the PostScript language file.

There are foukeywordshat may follow th&s!PS-Adobe-3.0 comment on

the same line. They flag the entire print job as a particular type of job so
document managers may immediately switch to some appropriate processing
mode. The following job types are recognized:

» EPSF—The file is arEncapsulated PostScript filerhich is primarily a
PostScript language file that produces an illustration. The EPS format is
designed to facilitate including these illustrations in other documents. The
exact format of an EPS file is described inRlostScript Document
Structuring Conventions Specificaticmilable from the Adobe Systems
Devlopers’ Association.

* Query—The entire job consists of PostScript language queries to a printer
from which replies are expected. A systems administrator or document
manager is likely to create a query job. See section 12.4, “Query
Conventions.”

» ExitServer—This flags a job that executes thdtserver or startjob
operator to allow the contents of the job to persist within the printer until it
is powered df Some document managers require this command to handle
these special jobs effectively. See the discussiesitkrver under
%%Begin(End)ExitServer.

32 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

%%BoundingBox:

» Resource—ASs a generalization of the idea of Level 2 resources, files that
are strictly resource definitions (fonts, procsets, files, patterns, forms)
should start with this comment and keyword. For example, a procset
resource should start with tbl@PS-Adobe-3.0 Resource-ProcSet
comment.

Fonts are resources, as well, but most fonts use one of two different
header comment$6!PS-AdobeFont-1.0 and%!FontTypel-1.0. In the
future, fonts conforming to this specification should use the
%!PS-Adobe-3.0 Resource-Font comment.

Document composition programs should not use these keywords when pro-
ducing a document intended for printing or display. Instead, they should use
only the%!PS-Adobe-3.0 comment. lllustration applications may use the
EPSF-3.0 keyword.

{ <lix> <lly> <urx> <ury>} | (atend)

<llx> ::=<int> (Lower left x coordinate)
<lly> ::=<int> (Lower left y coordinate)
<urx> = <int> (Upper right x coordinate)
<ury> ;= <int> (Upper right y coordinate)

This comment specifies the bounding box that encloses all marks painted
on all pages of a document. That is, it must be a “high water mark” in all
directions for marks made on any page. The four arguments correspond to
the lower left (lx, /ly) and upper right cornersr, ury) of the bounding box

in thedefault user coordinate systgRostScript units). See also the
%%PageBoundingBox: comment.

Figure 2 Determining the document bounding box

opeace Mo prcn
15y gunes Gk

Typography can be asrich '
i in !

IToday, thanksto thetools of

i emphass'
| words s
| ke
o era
! by it ligfnes o ik
' wance an
| s
tonic willting, M

\adj. amenable, compaisant, compliant, !
' obedient, subm\sswe subservient,
' tractable, willin

wther collective, helplu\ jointly, partlc\pamry
H together, unified, united

Iiypourepty con speck
reloquently for anyone.
ITyf hy can be as ri

typeface
by tslighiness o carkness !

' Today,
;Fﬂ'm!l ng H ©lectronic publishing,
inoun book, cortespandance, ediion, ol ;
i ue, manuscript, monograph, opus |
paperback publication, text, tome 1
volume, work writing '

Iwords by its boldnessand
sze. nflec by charceol
itypeface. Modulate pitch
:W itslightness or darkness.

Todey, anksmmemsm

pography can spesk
oquently for anyone.

123

Page 1 bounding box

%%Copyright:

Page 2 bounding box Page 3 bounding box Document bounding box

< textline>

This comment details any copyright information associated with the docu-
ment or resource.

5 General Conventions 33

%%Creator. < textline>

This comment indicates the document creator, usually the name of the docu-
ment composition software.

%%CreationDate: < textline>

This comment indicates the date and time the document was created. Neither
the date nor time need be in any standard format. This comment is meant to
be used purely for informational purposes, such as printing on banner pages.

%%DocumentData: Clean7Bit | Clean8Bit | Binary

This header comment specifies the type of data, usually located between
%%Begin(End)Data: comments, that appear in the document. It applies

only to data that are part of the document itself, not bytes that are added by
communications software—for example, an EOF character marking the end
of a job, or XON/XOFF characters for flow control. This comment warns a
print manager, such as a spooler, to avoid communications channels that
reserve the byte codes used in the document. A prime example of this is a
serial channel, which reserves byte codes like 0x04 for end of job and 0x14
for status request.

There are three ranges of byte codes defined:

* Clean7Bit—The page description consists of only byte codes 0x1B to
Ox7E (ESC to ‘~’), OxOA (LF), OxOD (CR), and 0x09 (TAB). Whenever
O0xOA and/or OxOD appear, they are used as end-of-line characters.
Whenever 0x09 appears, it is used as a tab character (i.e. whitespace).

» Clean8Bit—The same aSlean7Bit, but the document may also contain
byte codes 0x80—0xFF.

» Binary—Any byte codes from 0x00-0xFF may appear in the document.

The header section of the document (ugptEndComments) must always
consist ofClean7hit byte codes so it is universally readable. If the application
declares the document to Oan7Bit or Clean8Bit, it is responsible for
transforming any byte codes that fall outside the acceptable range back into
the acceptable range. Byte codes within character strings may be escaped—
for example, a 0x05 may be written (\005).

Documents witlClean7Bit data may be transmitted to a PostScript interpreter
over a serial line with 7 data bits. Documents Wilkan8Bit data may be
transmitted to a PostScript interpreter over a serial line with 8 data bits.
Documents witlBinary data cannot be transmitted over a serial line because
they may use byte codes reserved by the communications protocol. However
they may be transmitted via a transparent protocol, such as LocalTalk.

34 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%Emulation: < mode> ...
<mode> ::= diablo630 | fx100 | 1j2000 | hpgl | impress | hplj | ti855

This comment indicates that the document contains an invocation of the
stated emulator. This allows a document manager to route the document
to a printer that supports the correct type of emulation. See
%%Begin(End)Emulation: for more details.

%%EndComments (no keywords)

This comment indicates an explicit end to the header comments of the
document. Because header comments are contiguous, any line that does
not begin with 9% whereX is any printable character except space, tab, or
newline implicitly denotes the end of the header section.

%!PS-Adobe-3.0

%%Title: (Example of Header Comment Termination)

...More header comments...

%%DocumentResources: font Sonata

%GBDNodeName: smith@atlas.com

% This line implicitly denotes the end of the header
section.

%%Extensions: < extension> ...
<extension> ::= DPS | CMYK | Composite | FileSystem

This comment indicates that in order to print propehg document requires

a PostScript Level 1 interpreter that supports the listed PostScript language
extensions. The document manager can use this information to determine
whether a printer can print the document or to select possible printers for
rerouting the document. A list of operator sets specific to each extension is in
Appendix A of thePostScript Language Reference Manual, Second Edition

* DPS—The document contains operators defined in the PostScript
language extensions for the Display PostScript system. Most of these
operators are available in Level 2 implementations. See Appendix A of the
PostScript Language Reference Manual, Second Editiom list of
operators that are present only in Display PostScript implementations.

 CMYK—The document uses operators defined in the PostScript language
color extensions. Note that this is different from %#@Requirements:
color comment, in that it specifies that the PostScript interpreter must be
able to understand the CMYK color operators. It does not specify that the
printer must be capable of producing color output.

» Composite—The document uses operators defined in the PostScript
language composite font extensions.

5 General Conventions 35

* FileSystem—This keyword should be used if the document performs file
system commands. Note that certain file operators are already available
under the basic implementation of the PostScript language. See Appendix
A of thePostScript Language Reérce Manual, Second Editidor a list
of those operators that are specifically part of the file system extensions to
Level 1 implementations.

The %%Extensions: comment must be used if there are operators in the
document specific to a particular extension of the PostScript language.
However documents that provide conditional Level 1 emulation do not need
to use this comment. Also, if the document uses Level 2 operators, use the
%%Languagelevel: comment instead.

%%For: <textline>

This comment indicates the person and possibly the company name for
whom the document is being printed. It is frequently the “user name” of the
individual who composed the document, as determined by the document
composition software. This can be used for banner pages or for routing the
document after printing.

%%LanguagelLevel: < uint>

This comment indicates that the document contains PostScript language
operators particular to a certain level of implementation of the PostScript
language. Currently, only Level 1 and Level 2 are defined.

This commenmustbe used if there are operators in the document specific
to an implementation of the PostScript language above Level 1. However,
documents that provide conditional Level 1 emulation (for example, Level 1
emulation of the Level 2 operators used) need not use this comment. See
Appendix D of thePostScript Language Reference Manual, Second Edition
for emulation and compatibility strategies.

Level 2 operators are essentially a superset dbitge CMYK, Composite,
andFileSystem language extensions. If a language level of 2 is specified,
the individual extensions need not be specified. That is, use of both the
%%LanguageLevel: and%%Extensions: comments is hot necessary; one
or the other is sufficient. See &oExtensions: comment.

Note D enable a document to be output to as many irgégs as possible, a doc-
ument composition application should determine the minimum set of exten-
sions needed for the document to print eotly, It is poor practice to use the
%%Languagelevel: comment when e%Extensions: comment would have
been able to encompass all of the operators used in the document.

36 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%0Orientation:

%%Pages:

%%PageOrder:

{ < orientation> ... } | (atend)
<orientation> ::= Portrait | Landscape

This comment indicates the orientation of the pages in the document. It can
be used by previewing applications and post-processors to determine how to
orient the viewing window. Avortrait orientation indicates that the longest
edge of the paper is parallel to the vertical (y) aximsiscapeorientation
indicates that the longest edge of the paper is parallel to the horizontal (x)
axis. If more than one orientation applies to the document, an individual page
should specify its orientation by using #@oPageOrientation: comment.

< numpages> | (atend)
<numpages> ::= <uint> (Total number of pages)

This comment defines the numbewotual pages that a document will
image. This may be different from the numbepbysicalpages the printer
prints (the#copies key orsetpagedevice operator and other document
manager features may reduce or increase the physical number of pages).
If the document producem pages (for instance, if it represents an included
illustration that does not uskowpage), the page count should be 0. See
also thexs%Page: comment.

In previous specifications, it was valid to include an optipagke order
number after the number of pages. Its use is now discouraged because of
problems with th¢atend) syntax (one might know the page order before
one knows the number of pages). Please us#dtreageOrder: comment

to indicate page order.

< order> | (atend)
<order> ::= Ascend | Descend | Special

The%%PageOrder: comment is intended to help document managers
determine the order of pages in the document file, which in turn enables a
document manager optionally to reorder the pages. This comment can have
three page orders:

* Ascend—The pages are in ascending order—for example, 1-2-3-4-5.

» Descend—The pages of the document are in descending order—for
example, 5-4-3-2-1.

» Specia—Indicates that the document is isecialorder—for example,
signature order.

The distinction between a page ordeBpécial and no page order at all is

that in the absence of th&PageOrder comment, any assumption can be
made about the page order, and the document manager permits any reorder-
ing of the page. However, if the page order commespésial, the pages

must be left intact in the order given.

5 General Conventions 37

%%Routing: < textline>

This comment provides information about how to route a document back to
its owner after printing. At the discretion of the system administrator, it may
contain information about mail addresses or office locations.

%%Title: < textline>

This comment provides a text title for the document that is useful for printing
banner pages and for routing or recognizing documents.

%%Version: < version> <revision>
<version> ;= <real>
<revision> ::= <uint>

This comment can be used to note the version and revision number of a
document or resource. A document manager may wish to provide version
control services, or allow substitution of compatible versions/revisions of
a resource or document. Please se&phacname> elementary type for a
more thorough discussion of version and revisions.

5.2 General Body Comments
%%+ (no keywords)

Any document structuring comment that must be continued on another line to
avoid violating the 255-character line length constraint must use%ye
notation to indicate that a comment line is being continued. This notation
may be used after any of the document comment conventions, but may only
be necessary in those comments that provide a large list of names, such as
%%DocumentResources:. Here is an example of its use:

%%DocumentResources: font Palatino-Roman Palatino-Bold
%%+ font Palatino-Italic Palatino-Boldltalic Courier
%%+ font Optima LubalinGraph-DemiOblique

See section 3, “DSC Conformance,” for more information about line length
and restrictions.

%%BeginBinary: < bytecount>
<bytecount> ::= <uint>

%%EndBinary (no keywords)

These comments are used in a manner similar té¥Regin(End)Data:
comments. Thee%Begin(End)Binary: comments are designed to allow a
document manager to effectively ignore any binary data these comments
encapsulate.

38 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

%%BeginData:

%%EndData

To read data directly from the input stream in the PostScript language
(usingcurrentfile , for instance), it is necessary to invoke a procedure
followed immediately by the data to be read. If the data is embedded in the
%%Begin(End)Binary: construct, those comments are effectiyayt of the

data, which typically is not desired. To avoid this problem, the procedure
invocation should falinsidethe comments, even though it is not binary,

and thebytecount should reflect this so it can be skipped correctly. In the
case of a byte count, allow for carriage returns, if any.

This comment has been included for backward compatibility only and may
be discontinued in future versions of the DSC; use the more specific
%%Begin(End)Data: comments instead.

< numberof>[<type> [<bytesorlines>]]

<numberof> ::= <uint> (Lines or physical bytes)
<type> ::= Hex | Binary | ASCIl (Type of data)
<bytesorlines> ::= Bytes | Lines (Read in bytes or lines)

(no keywords)

These comments are designed to provide information about embedded bodies
of data. When a PostScript language document file is being parsed, encoun-
tering raw data can tremendously complicate the parsing process. Encapsu-
lating data within these comments can allow a document manager to ignore
the enclosed data, and speed the parsing processubérergument is

missing, binary data is assumed. If thgesorlines argument is missing,

numberof should be considered to indicate bytes of data.

Note that<numberof> indicates the bytes @hysicaldata, which vary from

the bytes ofirtual data in some cases. With hex, each bytértial data is
represented by two ASCII characters (two byteshgfsicaldata). Although

the PostScript interpreter ignores white space in hex data, these count toward
the byte count.

For example,
FD 10 2A 05

is 11 bytes ophysicaldata (8 bytes hex, 3 spaces) and 4 binary bytes of
virtual data.

Remember that binary data is especially sensitive to different print environ-
ments because it is an 8-bit representation. This can be very important to the
document manager if a print network has a channel that is 7 bit serial, for
example. See also th&6DocumentData: comment.

5 General Conventions 39

To read data directly from the input stream (usimgentfile , for instance),

it is necessary to invoke a procedure followathediatelyby the data to be
read. If the data is embedded in W#Begin(End)Data: construct, then those
comments are effectivelyart of the datawhich is typically not desirable.

To avoid this problem, the procedure invocation shouldrfaitlethe com-
ments, even though it is not binary, and the byte or line counts should reflect
this so it can be skipped correctly. In the case of a byte count, allow for
end-of-line characters, if any.

Note Document managers should ensure that the eéatisBeginData: comment
line is read before acting on the byte count.

In the example below, there are 135174 bytes of hex data, but the
%%BeginData: and%%EndData comments encompass the call to the
image operator. The resulting byte count includes 6 additional bytes, for
the string “image” plus the newline character.

Ipicstr 256 string def

25 140 translate

132 132 scale

256 256 8 [256 0 0 -256 0 256] { currentfile picstr readhexstring pop }
%%BeginData: 135174 Hex Bytes

image

4c47494h3187¢237d237b137438374ab
213769876¢c8976985a5¢c987675875756

...Additional 135102 bytes of hex...

%%EndData

Instead of keeping track of byte counts, it is probably easier to keep track of
linesof data. In the following example, the line count is increased by one to
account for the “image” string:

Ipicstr 256 string def

25 140 translate

132 132 scale

256 256 8 [256 0 0 -256 0 256] { currentfile picstr readhexstring pop }
%%BeginData: 4097 Hex Lines

image

4c47494b3187¢237d237b137438374ab
213769876c8976985a5c987675875756

...Additional 4094 lines of hex...

%%EndData

With binary data, it is unlikely that the concept of lines would be used,
because binary data is usually considered one whole stream.

40 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginDefaults

%%EndDefaults

(no keywords)
(no keywords)

These comments identify the start and end ofiffaultssection of the
document. These comments can only occur after the header section
(%%EndComments), after the EPSI previe%Begin(End)Preview), if
there is one, but before the prolég®BeginProlog) definitions.

Some page level comments that are similar to header comments can be used
in this defaults section of the file to denote default requirements, resources, or
media for all pages. This saves space in large documents (page-level values
do not need to be repeated for every page) and can give the document man-
ager some hints on how it might optimize resource usage in the file. The only
comments that can be used this way are the following:

%%PageBoundingBox:
%%PageCustomColors:
%%PageMedia:
%%PageOrientation:
%%PageProcessColors:
%%PageRequirements:
%%PageResources:

For example, if th@%PageOrientation: Portrait comment were used in the
defaults section, it would indicate that the default orientation for all pages
is portrait. When page-level comments are used this way they are known
aspage defaultsPage comments used in a page override any page defaults
in effect. In reference to the previous example, if a particular page of the
document were to have a landscape orientation, it would place a
%%PageOrientation: Landscape comment after thes%Page: comment

to override the default portrait orientation.

5 General Conventions 41

%!'PS-Adobe-3.0

Example 2 illustrates the page default concept.

Example 2

%%Title: (Example of page defaults)
%%DocumentNeededResources: font Palatino-Roman Helvetica
%%DocumentMedia: BuffLetter 612 792 75 buff ()

%%+ BluelLetter 612 792 244 blue (CorpLogo)

%%EndComments
%%BeginDefaults

%%PageResources: font Palatino-Roman

%%PageMedia: BuffLetter

%%EndDefaults
%%BeginProlog
...Prolog definitions...
%%EndProlog
%%BeginSetup

...PostScript language instructions to set the default paper size, weights, and

color...
%%EndSetup
%%Page: Cover 1

%%PageMedia: BlueLetter

%%BeginPageSetup

...PostScript language instructions to set the blue corporate logo cover paper...

%%EndPageSetup
...Rest of page 1...
%Page: ii 2

%%PageResources: font Palatino-Roman Helvetica

...Rest of page 2...
%%Page: iii 3

...Rest of the document...
%%EOF

In this example, the font resoureelatino-Roman is specified in the defaults
section as a page resource. This indicatesPtilatino-Roman is a page

default and will most likely be used on every page. Also, the niedfisetter

is specified as the page default. Buff-colored, 20-Ib, 8.5" x 11" paper will be
used for most pages.

Page 1 uses a special blue cover paper and overrides the page default (buff
paper) by putting &%PageMedia: comment in the page definition. Page 2
uses buff paper and therefore doesn’t have to pubtheageMedia:

comment in its page definition. However, it does usedthiestica font in

addition to thePalatino-Roman font. The page default falatino-Roman is
overridden by thés%PageResources: comment in the page definition.

42 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

%%BeginEmulation:

%%EndEmulation

Note

In some instances it may be superfluous to use these page defaults. If only one
type of orientation, media type, etc. is used in theeedticument, the header
comment alone is sufficient to indicate the default for the document. Page
defaults should only be used if there is more than one bounding box, custom
color, medium, orientation, process color, requirement, or resource used.

< mode>
<mode> ::= diablo630 | X100 | 1j2000 | hpgl | hplj | impress | ti855

(no keyword)

The %%BeginEmulation: comment signifies that the input data following the
comment contains some printer language other than PostScript. The first line
after thevs%BeginEmulation comment should be the PostScript language
instructions to invoke the emulator. This code is in the PPD file for the
printer. Note that the invocation of the emulator is restricted to one line.

This comment enables a document manager to route the document or piece
of the document to an appropriate printer. W¥EndEmulation comment

should be preceded by the code to switch back to PostScript mode on printers
that support this type of switching (again, limit this code to one line). Alter-
natively, thevs%EndEmulation comment may be omitted, in which case the
end-of-file switches the printer back into PostScript mode. The following
example illustrates the first approach:

%!PS-Adobe-3.0

%%Title: (Example of emulator comments)
%%Emulation: hplj

%%EndComments

...Prolog definitions and document setup...
%%BeginEmulation: hplj

3 setsoftwareiomode % Invoke hplj emulation
...Emulator data...

1B 7F 30 % Switch back to PostScript
%%EndEmulation

...Remainder of document...

When including emulator data, this may break the page independence con-
straint for a conforming PostScript language file, because there is no way to
signify page boundaries. Care should be taken when invoking specialized
features of the document manager, such as n-up printing. The document may
not be printed as expected.

5 General Conventions 43

%%BeginPreview: < width> <height> <depth> <lines>

<width> ::= <uint> (Width of the preview in pixels)
<height> ::= <uint> (Height of the preview in pixels)
<depth> ::= <uint> (Number of bits of data per pixel)
<lines> ::= <uint> (Number of lines in the preview)

%%EndPreview (no keywords)

These comments bracket the preview section of an EPS file in interchange
format (EPSI). The EPSI format is preferred over other platform-dependent
previews (for example, Apple Macintosh and IBM PC) when transferring
EPS files between heterogenous platforms.viitith andheight fields pro-

vide the number of image samples (pixels) for the previewdepe field
indicates how many bits of data are used to establish one sample pixel of the
preview (typical values are 1, 2, 4, or 8). Tines field indicates how many

lines of hexadecimal data are contained in the predewhat an application
disinterested in the preview can easily skip it.

The preview consists of a bitmap image of the file, as it would be rendered on
the page by the printer or PostScript language previewer. Applications that
use the EPSI file can use the preview image for on-screen display. Each line
of hexadecimal data should begin with a single percent sign. This makes the
entire preview section a PostScript language comment so the file can be sent
directly to a printer without modification. See section 6, “Device-Indepen-
dent Screen Preview,” of tlEencapsulated PostScript Specificati@vail-

able from the Adobe Systems Developers’ Association.

The EPSI preview should be placed afterdt%EndComments in the docu-
ment file, but before the defaults sect{gstoBegin(End)Defaults), if there is
one, and before the prolog%BeginProlog) definitions.

Note Preview comments can be used only in documents that comply with the EPS
file format. See thEncapsulated Postscript Specificatianailable fom the
Adobe Systems Developers’ Association forendletails, including platform-
specific versions of the preview (Apple Macintosh and IBM PC platforms).

%%BeginProlog (no keywords)
%%EndProlog (no keywords)

These comments delimit the beginning and ending of the prolog in the docu-
ment. The prolog musbnsist onlyof procset definitions. ThHg%EndProlog
comment is widely used and parsed for, and must be included in all docu-
ments that have a distinct prolog and script.

44 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginSetup

%%EndSetup

Breaking a document into a prolog and a script is conceptually important,
although not all document descriptions fall neatly into this model. If your
document represents free form PostScript language fragments that might
entirely be consideredszript, you should still include th&%EndProlog
comment, even though there may be nothing in the prolog part of the file.
This effectively makes the entire document a script.

See section 3.1, “Conforming Documents,” and 4, “Document Structure
Rules,” for more information on the contents of the document prolog.

(no keywords)
(no keywords)

These comments delimit the part of the document that does device setup for
a particular printer or document. There may be instructions for setting page
size, invoking manual feed, establishing a scale factor (or “landscape”
mode), downloading a font, or other document-level setup. Expect to see
liberal use of theetpagedevice operator andtatusdict operators between
these two comments. There may also be some general initialization instruc-
tions, such as setting some aspects of the graphics state. This code should be
limited to setting those items of the graphics state, such as the current font,
transfer function, or halftone screen, that will not ecéd byinitgraphics

or erasepage (showpage performs these two operations implicitigpecial

care must be taken to ensure that the document setup code modifies the cur-
rent graphics state and does not replace it. See Appendix |BoshScript
Language Reference Manual, Second Edittwrmore information about

how to properly modify the graphics state.

If present, these comments appear aftepdtEndProlog comment, but
before the firsts%Page: comment. In other words, these comments are not
part of the prolog. They should be in the first part of the script before any
pages are specified.

5 General Conventions 45

5.3 General Page Comments

Some of the following general page comments that specify the bounding box
or orientation may appear in the defaults section or in a particular page. If
these comments appear in the defaults section of the document file between
%%BeginDefaults and%%EndDefaults, they are in effect for the entire print
job. If they are found in the page-level comments for a page, they should be
in effect only for that page. See¥8Begin(End)Defaults for more details on

page defaults.

%%BeginObject: <name> [<code>]
<name> ::= <text> (Name of object)
<code> ::= <text> (Processing code)

%%EndObject (no keywords)

These comments delimit individual graphic elements of a page. In a context
where it is desirable to be able to recognize individual page elements, this
comment provides a mechanism to label and recognize them at the PostScript
language level. Labelling is especially useful when a document printing
system can print selected objects in a document or on a page.

For instance, theode field of this comment can be used to reprepeifing
levelsfor a document. For example, the printing manager may be requested
to “print only those objects with proofing levels less than 4.” This can save
printing time when proofing various elements of a document. It can also be
useful in systems that allow PostScript language program segments to be
parsed and re-edited into convenient groupings and categorizations of
graphic page elements. In a document production system or in an application
that is highly object-oriented, use of this comment is strongly recommended.

The user must specify to the application what things constitute an object and
what the proofing level of each object will be.

%%BeginPageSetup (no keywords)
%%EndPageSetup (no keywords)

These comments are analogous to#¥&BeginSetup: and%%EndSetup
comments, except théd%BeginPageSetup: and%%EndPageSetup appear

in the body of a document right aftev&Page: comment. They delimit

areas that set manual feed, establishgimay set orientation, download fonts

or other resources for the page, invoke particular paper colors, and so on.
This is the proper place to set up the graphics state for the page. It should be
assumed that anitgraphics and arerasepage (i.e.showpage) have been
performed prior to this page. Take special care to ensure that the code in the
page setupodifiesthe current graphics state rather than replaces it. See
Appendix | of thePostScript Language Reference Manual, Second Edition
for more information about how to properly modify the graphics state.

46 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%Page: <label> <ordinal>
<labelb ::= <text> (Page name)
<ordinal> ::= <uint> (Page position)

This comment marks the beginning of the PostScript language instructions
that describe a particular pagexPage: requires two argumentspage

label and asequential page numbérhe label may be anything, but the
ordinal page number must reflect the position of that page in the body of
the PostScript language file and must start wjthotO0. In the following
example, the name of the third page of the documadnt is

%!PS-Adobe-3.0
...Document prolog and setup...
%%Page: cover 1

...Rest of the cover page...
%%Page: ii 2

...Rest of the ii page...
%%Page: 1 3

...Rest of the first page...
%%Page: 2 4

...Rest of the second page...
%%EOF

A document manager should be ablegarrangethe contents of the print
file into a different order based on #@oPage: comment (or the pages may
be printed in parallel, if desired). Th&@oPageOrder: Special comment can
be used to inform a document manager that page reorcidngd notake
place.

%%PageBoundingBox: { <llx> <lly> <urx> <ury> } | (atend)

<llx> ::= <int> (Lower-left x coordinate)
<lly> ::= <int> (Lower-left y coordinate)
<urx> = <int> (Upper-right x coordinate)
<ury> ::=<int> (Upper-right y coordinate)

This comment specifies the bounding box that encloses all the marks painted
on a particular page (this®tthe bounding box of the whole document—

see théo%BoundingBox: comment)Jix, lly andurx, ury are the coordinates

of the lower-left and upper-right corners of the bounding box inléfeult

user coordinate syste(RostScript units). This comment can pertain to an
individual page or a document, depending on the location of the comment.
For example, the comment may be in the page itself or in the document
defaults section.

5 General Conventions 47

%%PageOrientation: Portrait | Landscape

This comment indicates the orientation of the page and can be used by
preview applications and post-processors to determine how to orient the
viewing window. This comment can pertain to an individual page or a docu-
ment, depending on the location of the comment. For example, the comment
may be in the page itself or in the document defaults section. See
%%0Orientation: for a description of the various orientations. See
%%Begin(End)Defaults for use of this comment as a page default.

5.4 General Trailer Comments

Some trailer comments are special and work with other comments that
support theatend) notation. In addition, trailer comments delimit sections of
PostScript language instructions that deal with cleanup and other housekeep-
ing. This cleanup can affect a particular page or the document as a whole.

%%PageTrailer (no keywords)

This comment marks the end of a page. Any page comments that may have
been deferred by thatend) convention should follow th&%PageTrailer
comment.

%%Trailer (no keywords)

This comment must only occur once at the end of the doclsoept Any
post-processing or cleanup should be contained itraiter of the docu-
ment, which is anything that follows tk&%Trailer comment. Any of the
document-level structure comments that waterredby using theatend)
convention must be mentioned in the trailer of the document after the
%%Trailer comment.

When entire documents are embedded in another document file, there may
be more than on#&%Trailer comment as a result. To avoid ambiguity,
embedded documents must be delimited by4#eBeginDocument: and
%%EndDocument comments.

%%EOF (no keywords)

This comment signifies the end of the document. When the document
manager sees this comment, it issues an end-of-file signal to the PostScript
interpreter This is done so system-dependent file endings, such as Control-D
and end-of-file packets, do not confuse the PostScript interpreter.

48 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

6 Requirement Conventions

The requirement conventions are comments that suggest document manager
action. Some of these comments list the resources needed or supplied by the
document, delimit those resources if they are supplied, and specify the inser-
tion point for those resources if they are needed. Other comments deal with
printer-specific features (listing requirements, delimiting portions of and
indicating insertion points for printer specific code) and are used in tandem
with thesetpagedevice operators ostatusdict operators, as well as the
PostScript printer description (PPD) files.

Note Use of thes%lnclude or %%O0perator comments in an envinment that does
not have a document manager can result in the document being processed
incorrectly.

6.1 Requirement Header Comments

%%DocumentMedia: <medianame> <attributes>

<medianame> :.= <text> (Tag name of the media)
<attributes> ::= <width> <height> <weight> <color> <type>
<width> ::= <real> (Width in PostScript units)
<height> ::= <real> (Height in PostScript units)
<weight> ::= <real> (Weight in g/m?)

<color> ::= <text> (Paper color)

<type> ::= <text> (Type of pre-printed form)

This comment indicates all types of paper media (paper sizes, weight, color)
this document requires. If any of the attributes are not applicable to a particu-
lar printing situation, zeroes must be substituted for numeric parameters and
null strings must be substituted for text parameters. Each different medium
that is needed should be listed in its approximate ordéesafendingjuan-

tity used.

%%DocumentMedia: Plain 612 792 75 white ()
%%+ BlueCL 612 792 244 blue CorpLogo
%%+ Tax 612 792 75 () (1040)

The preceding example indicates that the following media are needed for this
job:

» 8.5"x 11", 20 Ib. paper (Bond Ibs3.76 = g/rm).

« Cover pages in blue 8.%"'11", 65 Ib. paper preprinted with the corporate
logo.

* Preprinted IRS 1040 tax forms.

6 Requirement Conventions 49

Note that theype attribute refers to preprinted forms only, and dueats
refer to the PostScript language concept of form objects as resources. The
following keywords for theype name are defined for general use:

19HoleCerlox ColorTransparency CustlLetterHead Tabs
3Hole CorpLetterHead DeptLetterHead Transparency
2Hole CorpLogo Labels UserLetterHead

The relatedo%PageMedia: comment explicitly calls for the medium that
each page requires by referring toritsdianame.

%%DocumentNeededResources: <resources> | (atend)

This comment provides a list of resources the document needs—that is,
resourcesiot contained in the document file. This comment is intended to
help a document manager decide whether further parsing of the document file
is necessary to provide these needed resources. There must be at least one
corresponding instance of ti@sincludeResource: comment for each

resource this comment lists.

The application that produces the print file must not make any assumptions
about which resources are resident in the output device; it must list all
resources the document needs. Even if it is a resource, such as the Times-
Roman font program, that exists in nearly all implementations, it must appear
here. A resource must not be listed if it is not used anywhere in the document.

As a general rule, different types of resources should be listed on separate
lines using th&s%+ comment, as illustrated in the following example:

%%DocumentNeededResources: font Times-Roman Helvetica StoneSerif
%%+ font Adobe-Garamond Palatino-Roman

%%+ file /usr/lib/PostScript/logo.ps

%%+ procset Adobe_lllustrator_abbrev 1.0 0

%%+ pattern hatch bubbles

%%+ form (corporate order form)

%%+ encoding JIS

%%DocumentSuppliedResources : <resources> | (atend)

The%%DocumentSuppliedResources: comment contains extra information
for document managers designed to store and reuse the resources, and
provides helpful directories of the resources contained in the print file.
This comment lists all resources that have hgexidedin the document
print file. There is &%BeginResource: and%%EndResource pair for

each resource in this list. It is assumed that all resources on the
%%DocumentSuppliedResources: list are mutually exclusive of those
resources found on thé%DocumentNeededResources: list.

50 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%DocumentPrinterRequired: <print> <prod> [<vers> [<rev>]]

<print> ;.= <text> (Printer name and print zone)
<prod> ::= <text> (Product string or nickname)
<vers> .= <real> (Version number)

<rev> .= <uint> (Revision number)

This comment indicates that the PostScript language instructions in the
document are intended for a particular printer, which is identified by its
network printer name, nickname, or product string. The printer can optionally
be identified by its version and revision strings, as defined by the printer’s
PPD file or as returned by theoduct , version , andrevision operators.

%%DocumentPrinterRequired: can be used to request a particular printer in a
highly networked environment where that printer may be more convenient or
to override document manager defaults and prevent re-routing of the docu-
ment. It can also be used if the PostScript language file itself contains-printer
specific elements. This last case should rarely be necessary, as most docu-
ments requiring particular features of a PostScript printer can provide
requirement conventions indicating a need for that feature, rather than
require a particular printer. Then, if other printers are available that have

the necessary features, the document may still be printed as desired. The
following example unconditionally routes the document to a printer called
SEVILLE in the network’s “Sys_Marketing” zone:

%%DocumentPrinterRequired: (SEVILLE@Sys_Marketing) ()

If the nickname of the printer is used (this is often necessary to differentiate
among different models of printers), the version/revision numbers that are
part of the nickname should be ignored.

For example, the product name for a series of printers m@pbedyLaser).
There are several models of SpeedyLaser printers, the SL300, SL600, and
SL1200. The nicknames of these printers 8t8¢0 Version 47.2), (SL600
Version 48.1), and(SL1200 Version 49.4). To specify the need for a SL600
printer, the nickname (excluding the version number) should be used. For
example:

%%DocumentPrinterRequired: () (SL600)

The version and revision numbers in this comment should be used infre-
quently.

%%DocumentNeededFiles: { <filename> ... } | (atend)

The commen%%DocumentNeededFiles: lists the files a document
description needs. Each file mentioned in this list appears later in the
document as the argument of%#oincludeFile: comment. It is assumed
that files on th&s%DocumentNeededFiles: list do not include those
appearing on th&%DocumentSuppliedFiles: file list.

6 Requirement Conventions 51

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedFiles: { <filename> ... } | (atend)

The commen%%DocumentSuppliedFiles: lists the files in a document
description. Each file mentioned in this list appears later in the document in
the context of &%BeginFile: and%%EndFile: comment construct. It is
assumed that files on th&@sDocumentSuppliedFiles: list do not include

those appearing on tl&¥%DocumentNeededFiles: file list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

%%DocumentFonts: { <fontname> ... } | (atend)

This comment indicates that the print job uses all fonts listed. In particular,
there is at least one invocation of timelfont orfindresource operator for

each of the font names listed. The application producing the print file should
not make any assumptions about which fonts are resident in the printer

(for exampleTimes-Roman). Note that the list of font names for
%%DocumentFonts: should be the union of tBé%DocumentNeededFonts:
and%%DocumentSuppliedFonts: font lists. If the list of font names exceeds
the 255 characters-per-line limit, th&+ comment should be used to

extend the line.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comments
%%DocumentNeededResources: and%%DocumentSuppliedResources:
instead.

%%DocumentNeededFonts: { <fontname> ... } | (atend)

This comment provides a list of fonts the docunreqtiresand arenot
contained in the document file. It is assumed that fonts on the
%%DocumentNeededFonts: list do not appear on the
%%Document-SuppliedFonts: font list. It is also assumed that there
is at least one corresponding instance oftb@ncludeFont: comment
for each font listed in this section.

Note This comment is provided for backward compatibility and may be

discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

52 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%DocumentSuppliedFonts: { <fonthame> ... } | (atend)

Note

%%DocumentProcSets:

Note

This comment provides a list of font files that have been provided in
the document print file as downloaded fonts. It is assumed that fonts
on the%%DocumentSuppliedFonts: list do not appear on the
%%DocumentNeededFonts: font list. There is at least one
correspondinge%BeginFont: and%%EndFont pair in the document
description for each of the listed font names.

This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

{ <procname> ... } | (atend)

This comment provides a list afl procsets referenced in the document.
Its use is similar to th&#%DocumentFonts: comment. The list of
procsets fope%DocumentProcSets: should be the union of the
%%DocumentNeededProcSets: and%%DocumentSuppliedProcSets:
procset lists. If the list of procset names exceeds the 255 characters-
per-line limit, the%s%+ comment should be used to extend the line.

This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%DocumentNeededResources: and%%DocumentSuppliedResources:
comments instead.

%%DocumentNeededProcSets: { <procname> ... } | (atend)

Note

This comment indicates that the document needs the listed procsets. It is
assumed that procsets on #agDocumentNeededProcSets: list do not
appear on thes%DocumentSuppliedProcSets: procset list. This comment is
used whenever arg%lincludeProcSet: comments appear in the file.

This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general comment
%%DocumentNeededResources: instead.

%%DocumentSuppliedProcSets: { <prochame> ... } | (atend)

Note

This comment indicates that the document contains the listed procsets. It is
assumed that procsets in th&DocumentSuppliedProcSets: list do not

include those appearing on t8sDocumentNeededProcSets: procset list.

This comment is used whenever aa%BeginProcSet and%%EndProcSet
comments appear within the document.

This comment is provided for backward compatibility and may be

discontinued in later versions of the DSC. Use the more general comment
%%DocumentSuppliedResources: instead.

6 Requirement Conventions 53

%%Operatorintervention: [<password>]
<password> ::= <textline>

This comment causes the document manager to block a print job in the print
gueue until the printer operator releases the print job for printing. The com-
ment may contain an optionadssword that the print operator must supply to
release the job. This allows the printing of sensitive documents to be delayed
until the intended recipient is present at the printer to pick up the document.

%%OperatorMessage: < textline>

If the output device has an appropriate user interface, the
%%0OperatorMessage: comment provides a message that the document
manager can display on the console before printing the job. This comment
must only appear in the header of the file.

%%ProofMode: <mode>
<mode> ::= TrustMe | Substitute | NotifyMe

This comment provides information about the level of accuracy that is
required for printing. It is intended to provide guidance to the document
manager for appropriate tactics to use when error conditions arise or when
resource and feature shortages are encountered.

The three modes may be thought of as instructions to the document manager
If the document manager detects a resource or feature shortage, such as a
missing font or unavailable paper size, it should take action based on these
proof modes:

» TrustMe—Indicates the document manager shadttake special action.
The intent is that the document formatting programs or the user knows
more than the document manadear example, fonts may be available on
a network font server that the document manager does not know about.

Even with a comment lik&%IncludeResource:, if the %%ProofMode is
TrustMe, the printing manager should proceed even if a resource cannot
be found. The assumption is that the document can compensate for the
resource not being included.

» Substitute—Indicates the printing manager should do the best it can to
supply missing resources with alternatives. This may mean substituting
fonts, scaling pages (or tiling) when paper sizes are not available, and so
on. This is the default proofing level and should be used ththe is
missing from the comment or if the comment is missing from the
document.

54 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

* NotifyMe—Indicates the document should not be printed if there are any
mismatches or resource shortages noted by the printing manager. For
example, when printing on an expensive color prirfténe correct font is
not available, the user probably doed want a default font. The
document manager, if it cancels the print job, should notify the user in
some system-specific manner.

These modes are intended for the printing manager to cobsifieeit

prints the file, based on its own knowledge and queries of available fonts,
paper sizes, and other resources. If the file is printed, and an error occurs,
that is a separate issue.

%%Requirements: <requirement> [(<style> ...)] ...
<requirement> ::= collate | color | duplex | faceup | fax | fold | jog |
manualfeed | numcopies | punch | resolution | rollfed |
staple
<style> ::= <text>

This comment describes document requirements, such as duplex printing,
hole punching, collating, or other physical document processing needs. These
requirements may be activated by the document wsanggdict operators

or setpagedevice , or they may be requested using ##éIncludeFeature:
comment.

The requirement parameter should correspond to a specific printer feature.
The optionaktyle parameter can be used to further describe the specifics of
the processing. For example, fhech requirement has a style to indicate
that a printer capable of 19 Hole Cerlox punching is requimatth(19). If

more than one style of requirement is necessagystyles can be listed in the
enclosing parentheses (separated by commas) for that requirement. For
example, if both positional stapling (staple in the lower right hand corner)
and staple orientation (staple at 45 degrees) is desired, the requirement is:
staple(position,orient). This informs the document manager that the printer
printing this document must be equipped with a stapler that can pasition
orient the staple.

The %%Requirements: comment can be used to determine if the printer the
user selects can meet the docunsartjuirements. If it cannot, the document
should be rerouted to a printer that can, otherwise the document is not pro-
cessed as expected. It is the document manager’s responsibility to determine
if the printer can fulfill the requirements and if the operator and/or application
should be notified of any incapabilitgee also th&%ProofMode: comment

for actions to take when there are no printers available that satisfy the
requirements.

6 Requirement Conventions 55

Note Then%Requirements: comment is informational only; it does not suggest
that the document manager actuate these requirements—that is, turn them
on. The PostScript language instructions in the document activate these
features.

The following keywords for theequirement parameter are defined:

» collate—Indicates that the document contains code that will instruct the
printer to produce collated copies (for example, 1-2-3-1-2-3-1-2-3), rather
than uncollated copies (for example, 1-1-1-2-2-2-3-3-3pllte is not
specified, then non-collation of the document should be assumed, except if
theduplex, fold, jog, or staple requirements are specified (they imply
collation by definition). This requirement should be used in conjunction
with thenumcopies requirement.

 color—Indicates that the printer must be able to print in cdidinis option
is not specified, monochrome printing is assumed to be sufficient.

* color(separation)—Indicates that the printer must be able to perform
internal color separation. If this style modifier is not specified, composite
color output is assumed to be sufficient.

* duplex—Indicates that the document issues commands such that pages
are printed on both sides of the pagery printer intended to print such a
document properly must be capable of producing duplex output.

 duplex(tumble)—Indicates a style of duplex printing in which the logical
top of the back side is rotated 180 degrees from the logical top of the front
side. A wall calendar is an example of a document that is typically tumble
duplexed.

» faceup—Indicates that output pages are stacked face-up. If this
requirement is not specified, then the selected printer need not be
capable of stacking pages face-up.

» fax—Indicates that the document contains segments of PostScript code
pertaining to fax devices and should be sent to a fax-capable printer.

» fold—Indicates that the document requests that the printer fold the
resulting output. Typical style modifiers to this requirement would be
letter, z-fold, doublegate, leftgate, rightgate, andsaddle. These are
illustrated in Figure 3.

* jog—Indicates that jobs or multiple replications of the same document are
offset-stacked from one another in the output {fféage document manager
must ensure that the selected printer has the ability to offset stack job
output.

56 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

manualfeed—Indicates that the document requests that paper be fed in
from the manual feed slot. If this requirement is not specified, the selected
printer need not have a manual feed slot.

numcopies(<uint>)—Indicates that the document instructs the printer to
produce wint> number of copies of the output. If this requirement is not
specified, a default afumcopies(1) should be assumed.

punch—Indicates that the document specifies commands concerning hole
punching. Ifpunch is not specified, the printer need not be capable of
punching.

punch(<uint>)—Indicates that the document contains PostScript language
instructions that cause the output to be punched witht><number of

holes. Ypical values are 3-, 5-, and 19-hole (Cerlox) punching. If there is
no style modifier to thepunch requirement, 3-hole punching should be
assumed to be acceptable.

resolution(x, y)—Indicates that the printer is set to a particular resolution in
thex andy directions. The printer manager must provide a printer that can
print in that resolution. If this requirement is not specified, any printer
resolution is acceptable.

rollfed—Indicates that the document issues commands specific to roll-fed
devices, such as where and when to cut the paper, how far to advance the
paper, and so on. If this requirement is not specified, the printer need not
support roll-fed paper.

staple—Indicates that PostScript language commands in the document
cause the output to be stapledstiple is not specified as a requirement,
the printer need not support stapling.

staple([position],[orienf])—Indicates a staple position and a staple
orientation. A stapler may be able to position staples on a page in several
different locations. If the print job needs a printer stapler that performs
positioning, this should be indicated by the style keywmarsltion. If

staple orientation is needed (for example, 0, 45, 90, or 135 degrees), the
orient style should be included with the staple requirement. If no style
modifiers are given, then simple stapling is assumed to be sufficient (top
left-hand corner).

6 Requirement Conventions 57

Figure 3 Various fold options

Double Gate

AV

Letter Z-Fold

Left Gate Right Gate Saddle

The order of the arguments to #@oRequirements: comment is significant
and implies the order in which the operations occur in the PostScript lan-
guage code.

Example 3 shows the proper use of #téRequirements: comment and the
associatedo%Begin(End)Feature: comments. Three copies of this document
will be printed duplex; the copies will be offset in the output tray from one
another.

Example 3

%!PS-Adobe-3.0

%%Title: (Example of requirements)
%%LanguageLevel: 2

%%Requirements: duplex numcopies(3) jog
%%EndComments

%%BeginProlog

...Various prolog definitions...
%%EndProlog

%%BeginSetup

% For Level 1 this could have been a series of statusdict operators
%%BeginFeature: *Duplex True

<< /Duplex true >> setpagedevice
%%EndFeature

/#copies 3 def

%%BeginFeature: *Jog 3

<< /Jog 3 >> setpagedevice
%%EndFeature

%%EndSetup

...Rest of the document...

%%EOF

58 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note that in this instance, callsdetpagedevice are separated for each fea-
ture. This enables a document manager to re-route the document to a Level 1
printer. If output is going to a Level 2 printer only, the following could have
been used:

<< /Duplex true /NumCopies true /Jog 3 >>
setpagedevice

Because Level 2 feature activation is device independent, the
%%Begin(End)Feature: comments are unnecessary if the document is con-
fined to Level 2 interpreters. Th&oRequirements: and the
%%LanguageLevel: comments are still necessary, however.

Note This comment lists all of the requirements for a particular job; individual
pages may use some of tegquirements in diffeant combinations.drspecify
what the page requirements are for a particular page or for the whole docu-
ment (page defaults), see theoPageRequirements: comment.

%%VMIlocation: global | local

This comment is to inform resource users if a resource can be loaded into
global or local VM. For all resource categories other than a font, the operator
findresource unconditionally executesue setglobal before executing the

file that defines the resource. This means a resource is loaded into global VM
unlessfalse setglobal appears in the resource definition.

The creator of a resource must determine if the resource works correctly in
global VM. If it does, the resource mumsit executeetglobal . The resource
may wish to include th&%VMlocation: global comment. The resource is
loaded into global VM byindresource , but will be loaded into current VM
under the control of a document manager if it is explicitly downloaded.

If the resource does not work in global VM or if the creator of the resource
does not know if the resource will work reliably in global VM, the resource
must use thee%VMlocation: local comment and the following PostScript
language fragment:

currentglobal

false setglobal

...Def inition of the resource, including
def ineresource...

setglobal

6 Requirement Conventions 59

%%VMusage: < max> <min>
<max> ::= <uint> (Maximum VM used by resource)<min> ::=
<uint> (Minimum VM used by resource)

The document manager can use the information supplied by this comment to
determine if the PostScript language interpreter has enough VM storage to
handle this particular resource. This comment should be used only in static
resource files, such as fonts, procsets, files, forms, and patterns, which are
all resources that rarely change and should not generally be used in page
descriptions.

max indicates the amount of VM storage this resource consumes if it is the
first resource of its type to be downloadex indicates the minimum

amount of VM this resource needs. The numbers may not be equal because
some resources, such as fonts, can share VM storage in some versions of the
PostScript interpretem synthetic fonts, for example, thiearstrings of the

font may be shared.

These numbers are not determined in the resource. Rather, they are deter-
mined by the resource creator when the resource (for example, a font) is ini-
tially programmed. The numbers are placed in the resource as static entities
in this comment. To achieve accurate results when determiningdbe

values, make sure there are no dependencies on other resources or conditions.

The VM a resource uses can be found by issuingrtiseatus command

before and after downloading a resource, and then again after downloading
the same resource a second time. THerdifice between the first and second
numbers (before and after the first downloading) yieldsithevalue; the
difference between the second and third (after the second download) yields
the min value. The following example illustrates how to obtaintae and

min values for a resource:

vmstatus pop /vmstart exch def pop

...The resource goes here...

vmstatus pop dup vmstart sub (Max:) print == flush
/vmstart exch def pop

...The resource goes here...

vmstatus pop vmstart sub (Min:) print == flush pop

Note To obtain accurate memory usage values, it is important to turn off the
garbage collection mechanism in Level 2.

60 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

6.2

Requirement Body Comments

Some of the comments listed in this section, if used, must have a
corresponding comment in the header of the document. For example,

if the %%IncludeResource: comment is used, there must be a
%%DocumentNeededResources: comment in the header of the document.

Table 2 Body and header comment usage

Body Comment Used Corresponding Header Comment

%%Begin(End)Document: %%DocumentSuppliedResources: file
%%lncludeDocument: %%DocumentNeededResources: file

%%Begin(End)Resource: %%DocumentSuppliedResources:

%%lIncludeResource: %%DocumentNeededResources:
%%Begin(End)File: %%DocumentSuppliedResources: file
%%IncludeFile: %%DocumentNeededResources: file
%%Begin(End)Font: %%DocumentSuppliedResources: font
%%lIncludeFont: %%DocumentNeededResources: font
%%Begin(End)ProcSet: %%DocumentSuppliedResources: procset
%%lncludeProcSet: %%DocumentNeededResources: procset
%%Begin(End)Feature: %%Requirements: or %%DocumentMedia:
%%lncludeFeature: %%Requirements: or %%DocumentMedia

%%Begin and%%End comments indicate that the PostScript language
instructions enclosed by these comments is a resource, feature, or document.
An intelligent document manager may save resources for future use by
creating a resource library on the host system. The document manager may
replace printer-specific feature instructions when rerouting the document to

a different printer, or may ignore duplicate DSC comments in an included
document. The proper use of these comments facilitates this intelligent
document handling.

%%Include comments indicate that the named resource, feature, or document
(for example, font, procset, file, paper attribute, EPS file, and so on) should
be included in the document at the point where the comment is encountered.
The document manager fulfills these requirements so there is an inherent risk
in using these comments in a document. If there is no document manager in
your system environment, the document may not print corréatlthe DSC
become more prevalent and strictly adhered to, there will be more document
manager products available to take advantage of th&seclude comments.

6 Requirement Conventions 61

%%BeginDocument: <name> [<version> [<type>]]

<name> ::= <text> (Document name)
<version> ::= <real> (Document version)
<type> .= <text> (Document type)

%%EndDocument (no keywords)

These comments delimit @&mtire conforming documetitat is imported as

part of another PostScript language document or print jobnaine of the
document is usually environment-specific; it can be an operating system file
name or a key to a document database.verston andtype fields are

optional and, if used, should provide extra information for recognizing
specific documents (an example of usage is a version control system).

The%%BeginDocument: comment is necessary to allow multiple
occurrences of ths!PS-Adobe-3.0, %%EndProlog, %%Trailer, and%%EOF
comments in the body of a document. Any document file that is embedded
within another document filmustbe surrounded by these comments.

Note All feature and resource requirements of an included (child) document
should be inherited by the including (parent) document. For example, if a
child document needs the StoneSerif font resource, this must be reflected in
the %%DocumentNeededResources: comment of the parent. This is neces-
sary so document managers can examine the top level header of any docu-
ment and know all resources and features that are required.

%%IncludeDocument: < name> [<version> [<revision>] |

<name> ::= <text> (Document name)
<version> ::= <real> (Version of the document)
<revision> ::= <int> (Revision of version)

This comment is much like tlé%IncludeResource: file comment except
that it specifies that the included file is@forming document description
rather than a small portion of stand-alone PostScript language code.
This means that, in all probability, the document contains at least one
instance okhowpage , and the included document should be wrapped with
asave andrestore . In particular, illustrations and EPSF files that have

no effect other than to make marks on a page are perfectly suited for the
%%IncludeDocument: convention.

When a document file is printed, usually a certain amount of PostScript lan-
guage code is added to the file. Such code may deal with font downloading
issues, paper sizes, or other aspects of printing once a printer has been
selected for the document. At that stage, the printing manager must remove
the %%IncludeDocument: comment and embed the requested document
(along with all the structuring conventions that may fall within that file)
betweerto%BeginDocument: and%%EndDocument comments.

62 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginFeature: < featuretype> [<option>]
<featuretype> :.= <text> (PPD feature name)
<option> ::= <text> (Feature option)

%%EndFeature (no keywords)

The %%BeginFeature and%%EndFeature comments delimit any PostScript
language fragments that invoke a printer-specific feature on a printer. The
featuretype corresponds to one of the keywords in the PostScript printer
description (PPD) file, and ttfeaturetype option sequence must be exactly

as it is found in the PPD file so it cooperates effectively with these conven-
tions.

A document manager may choose to replace the enclosed PostScript
language code with the proper sequence of instructions if the document is
sent to a different printer than originally intended. In a sense, this is the
opposite of thés%includeFeature: comment, which indicates that the
document manager must invoke the specified printer feature at that position
in the print file. The next two examples set up an imageable region for a job.
Example 4 uses the Levekfatusdict method of selecting page size.

Example 5 uses the new Levedé@pagedevice operator.

Example 4

%%BeginFeature: *PageSize Legal
legal
%%EndFeature

Example 5

%%BeginFeature: *PageSize Legal
<< /PageSize [612 1004] >> setpagedevice
%%EndFeature

%%lIncludeFeature: <featuretype> [<option>]
<featuretype> :.= <text> (Name of desired feature)
<option> ::= <text> (Feature option)

This comment specifies the need for a particular printer feature, as described
in the PostScript printer description (PPD) file. Its use specifiguirement

a document manager must fulfill before printing (see also the discussion
under%%BeginFeature). The document file may make the assumption that
the %%IncludeFeature line in the file is replaced by the appropriate

PostScript language fragment from the appropriate PPD file, and that the
execution of the file may be contextually dependent upon this replacement.
This offers a very powerful way of making a document behavereifitly on
different printers in a device-independent man8ee thd>ostScript Printer
Description Files Specificatioior more information about PPD files.

6 Requirement Conventions 63

%%BeginFile: <filename>
%%EndFile (no keywords)

The enclosed segment is a fragment of PostScript language code or some
other type of resource that does not fall within any of the other resource
categories. The file-server component of a document manager may extract a
copy of this file for later use by thé%IncludeFile: or %%IncludeResource:

file comments. The file name will usually correspond to the original disk file
name on the host system.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

%%lncludeFile: <filename>

Indicates that the document manager must insert the specified file at the cur-
rent position in the document. The file name specified also must appear in the
%%DocumentNeededResources: file or the%%DocumentNeededFiles: list.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginFont: <fontname> [<printername>]
<printername> ::= <text>

%%EndFont (no keywords)

These comments delimit a downloaded font. The font-server component of a
document manager may remove the font from the print file (for instance, if
the font is already resident on the chosen printer) or it may simply keep a
copy of it for later use by th%IncludeFont: or %%lIncludeResource: font
comments. Théntname field must be the valid PostScript language name of
the font as used by thiefinefont operator, and the optionatintername

field may contain the network name of the printer, in an environment where
fonts may be tied to particular printers.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

64 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%lncludeFont:

Note

%%BeginProcSet:

%%EndProcSet

Note

<fontname>

Indicates that the document manager must include the specified font at the
current position in the document. Thatname specified should be the cor-

rect PostScript language name for the font (without the leading slash). Due to
the presence of multipkave/restore contexts, a document manager may

have to supply a specific font more than once in one document, and should do
so whenever this comment is encountered.

This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

<prochame>

(no keywords)

The PostScript language instructions enclosed bysthBeginProcSet: and
%%EndProcSet comments typically represents some subset of the document
prolog. The prolog may be broken down into many subpackages, or proce-
dure sets (procsets), which may define groups of routines appropriate for
different imaging requirements. These individual procsets are identified by
name, version, and revision numbers for reference by a document manage-
ment system. A document manager may choose to extract these groosets
the print file to manage them separately for a whole family of docurdents
entire document prolog may be an instance of a procset, in that it is a body
of procedure definitions used by a document description file. (See the
%%DocumentProcSets:, %%IncludeProcSet:, and%%IncludeResource:

procset comments). Theame, version, andrevision fields should uniquely
identify the procset. Theame may consist of a disk file name or it may use a
PostScript language name under which the prolog is stored in the.[Bieger
the %%?Begin(End)ProcSetQuery: and the%%?Begin(End)ResourceQuery:
procset comment, which one may use to query the printer or document
manager for the prolog name and version fields.

A document manager may assume that the document prolog consists of
everything from the beginning of the print file through %#&EndProlog
comment, which may encompass several instances of the
%Begin(End)ProcSet: comments.

This comment is provided for backward compatibility and may be

discontinued in later versions of the DSC. Use the more general
%%Begin(End)Resource: comments instead.

6 Requirement Conventions 65

%%lIncludeProcSet: <prochame>

This is a special case of the more gen&ealncludeResource: file comment.

It requires that a PostScript language procset with the given name, version,
and revision be inserted into the document at the current position. If a
version-numbering scheme is not used, these fields should still be filled
with a “dummy” value, such as See théo%Begin(End)Resource: and
%DocumentNeededResources: comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%IncludeResource: comment instead.

%%BeginResource: <resource> [<max> <min>]
<max> ::= <uint> (Maximum VM used by resource)
<min> ::= <uint> (Minimum VM used by resource)

%%EndResource (no keywords)

These comments delimit a resource that is defined by PostScript language
code directly in the document file—for example, downloadable fonts.

The resource-management component of the document manager may remove
the resource from the print file and replace it wit¥@#sincludeResource

comment (for instance, if the chosen printer already has the resource
resident) or it may simply keep a copy of it for later use by the
%%IncludeResource: comment. The resource name specified should

also appear in this%DocumentSuppliedResources: list.

The optionalusageparameters should be supplied if h&VMusage:

comment is not provided in the resource. A document manager can use these
numbers to determine if a particular resource will fit inside the printer VM. If

it cannot, the document manager may move the resource within the print file,
juggling resources until the file can fit, or it may reroute the print file to a
printer with more VM. See th#%VMusage: comment for details on how

to obtain these numbers for a resource.

Font note—These comments delimit a font that is being downloaded. The
font server component of a document manager may remove the font from
the print file (for instance, if the chosen printer already has the font resident)
or it may simply keep a copy of it for later use by %#éIncludeResource:
comment.

File note—The enclosed segment is a fragment of PostScript language code
or some other item that does not fall within the other resource categories.
The file-server component of the document manager may extract a copy of
this file for later use by tha%IncludeResource: comment. The file name

will usually correspond to the original disk file name on the host system.

66 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%lncludeResource:

Procset note-The PostScript language code enclosed by these comments
typically represents some subset of the document prolog. The prolog may be
broken down into many procedure sets, which may define groups of routines
appropriate for dferent imaging requirements. These individual procsets are
identified by aname, version, and optionatevision numbers for reference by

a print management system. A document manager may choose to extract
these procsets from a print file to manage them separately for a whole family
of documents. An entire document prolog may be an instance of a procset, in
that it is a body of procedure definitions used by a document description file.

<resource>

Indicates that the document manager must include the named resource at this
point in the document. The resource name specified also must appear in the
%%DocumentNeededResources: list. It is up to the application creating the
document to manage memory for resources that employ this comment (using
savelrestore pairs). Although the font example below is specific to fonts,
memory management and resource optimization are also applicable to forms,
patterns, and other memory-intensive resources.

Font note—In the case of commonly available fonts, it is highly likely that
the font server or document manager would ignore the inclusion request,
because the fonts would already be available on the printer. However, the
%%IncludeResource: font comment must still be included so that if a stan-
dard font is not available it can be supplied (there are printers that do not
have the 13 standard fonts that are resident in most of Adobe’s PostScript
implementations)%%IncludeResource: font comments of this nature should
be placed in the document setup section.

Due to the presence of multiplave/restore contexts, a font server may

have to supply a specific font more than once within a single document, and
should do so whenever this comment is encountered. Depending on the
memory available in the target printer, a document manager may optimize
font usage by moving the inclusion of fonts within the document. A freguentl
used font could be downloaded during the document setup, thus making it
available for use by any page. A font that is used on one or two particular
pages, could be downloaded during the page setups for each of the individual
pages. A special font that is used for one or two paragraphs on one page only
would not be moved.

In Example 6, four different fonts (ITC Stdhdalatino*, Cartg and
Sonat8) are downloaded. The memory management scheme used by
the application that generated this code assumes that up to three fonts
may be downloaded at any one point in time. Note the use of multiple
%%IncludeResource: font comments for the same font whesaae -restore
pair “undefines” previously included fonts.

6 Requirement Conventions 67

Example 6

%!PS-Adobe-3.0

%%Title: (Example of memory management)
%%DocumentNeededResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%EndComments

%%BeginDefaults

%%PageResources: font Helvetica Helvetica-Bold StoneSerif
%%EndDefaults

%%BeginProlog

...Document prolog...

%%EndProlog

%%BeginSetup

% Include the common fonts found in most implementations
%%IncludeResource: font Helvetica

%%IncludeResource: font Helvetica-Bold

...Rest of the set up...

%%EndSetup

%%Page: 11

%%PageResources: font Helvetica Helvetica-Bold

%%+ font StoneSerif Palatino-Roman Carta Sonata
%%BeginPageSetup

/pagelevel save def

%%EndPageSetup

... Text that uses common fonts like Helvetica...

[fontlevel save def

%%IncludeResource: font StoneSerif

... Text that uses the StoneSerif font and/or common fonts...
%%IncludeResource: font Palatino-Roman

... Text that uses Palatino-Roman, StoneSerif and/or common fonts...
%%IncludeResource: font Carta

... Text that uses the Carta, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore % Ran out of room for new fonts

[fontlevel save def

%%IncludeResource: font StoneSerif

%%IncludeResource: font Palatino-Roman
%%IncludeResource: font Sonata

... Text that uses the Sonata, Palatino-Roman, StoneSerif, and/or common fonts...

fontlevel restore % Need to switch fonts

[fontlevel save def

%%IncludeResource: font StoneSerif
%%IncludeResource: font Carta

... Text that uses the Carta, StoneSerif, and/or common fonts...
pagelevel restore

showpage

%%Page: 2 2

%%PageResources: font StoneSerif Palatino-Roman
...Rest of the document...

%%EQOF

68 PostScript Language Document Structuring Conventions Specification

(25 Sep 92)

%!'PS-Adobe-3.0

%%Title: (Optimized file)

At print time, the document manager decides there is enough memory avail-
able in the VM of the tgiet device to hold four fonts at any one point in time
and decides to optimize the document. He®etica andHelvetica-Bold

inclusions are ignored because these fonts are available on the printer. The
page level commeft%PageResources: font StoneSerif is recognized in the
defaults section, indicating that the f@wneSerif is likely to be used on

every page. The document manager moves the inclusion of this font to the
end of the document setup and ignores all subsequent inclusion requests for
StoneSerif.

The document manager also realizes thaPdtatino-Roman font is only

used on pages 1 and 2. This font is downloaded at the end of the page setup
for each page. Thearta andSonata fonts are used on page 1 ariowever
theCarta font is downloaded twice due to the three-font memory managemen
scheme used by the application. The document manager also moves the
downloading of theCarta font to the end of the page setup. Hoaata

font is used only once and is downloaded atthencludeResource: font
comment. Example 7 shows the resulting file:

Example 7

%%DocumentNeededResources: font Helvetica Helvetica-Bold
%%DocumentSuppliedResources: font StoneSerif Palatino-Roman Carta Sonata

%%EndComments

%%BeginDefaults

%%PageResources: font Helvetica Helvetica-Bold StoneSerif
%%EndDefaults

%%BeginProlog

...Document prolog...

%%EndProlog

%%BeginSetup

% Include the common fonts found in most implementations
%%lncludeResource: font Helvetica
%%lncludeResource: font Helvetica-Bold
%%BeginResource: font StoneSerif

...StoneSerif font is downloaded here...
%%EndResource

...Rest of the set up...

%%EndSetup

%%Page: 11

%%PageResources: font Helvetica Helvetica-Bold
%%+ font StoneSerif Palatino-Roman Carta Sonata
%%BeginPageSetup

/pagelevel save def

%%BeginResource: font Palatino-Roman
...Palatino-Roman font is downloaded here...
%%EndResource

%%BeginResource: font Carta

6 Requirement Conventions

69

...Carta font is downloaded here...

%%EndResource

%%EndPageSetup

... Text that uses common fonts like Helvetica...

[fontlevel save def

... Text that uses the StoneSerif font and/or common fonts...

... Text that uses Palatino-Roman, StoneSerif and/or common fonts...
... Text that uses the Carta, Palatino-Roman, StoneSerif, and/or common fonts...
fontlevel restore% Ran out of room for new fonts

[fontlevel save def

%%BeginResource: font Sonata

...Sonata font is downloaded here...

%%EndResource

... Text that uses the Sonata, Palatino-Roman, StoneSerif, and/or common fonts...

fontlevel restore % Need to switch fonts again
[fontlevel save def

... Text that uses the Carta, StoneSerif, and/or common fonts...
pagelevel restore

showpage

%%Page: 2 2

%%PageResources: font StoneSerif Palatino-Roman
%%BeginPageSetup

/pagelevel save def

%%BeginResource: font Palatino-Roman
...Palatino-Roman font is downloaded again here...
%%EndResource

...Rest of the document...

%%EOF

70 PostScript Language Document Structuring Conventions Specification

(25 Sep 92)

Procset note-The %%IncludeResource: procset comment must appear in

the document prolog only. Procsets do not generally have to worry about
save/restore pairs as in the above example. In the case of procsets, the docu-
ment manager may replace the desired procset with an upwardly compatible
version of the desired procset (a newer version). See section 4.6, “Comment
Syntax Reference,” for more details on compatible procsets. In addition, the
document manager may optimize procset inclusion by replacing a procset
that occurs multiple times with a single copy at the top level of a document.
Example 8 shows the use of #@sincludeResource: procset comment:

Example 8

%!PS-Adobe-3.0

%%Creator: Adobe lllustrator 88(TM) 1.9.3

%%For: (Joe Smith) (Adobe Systems Incorporated)

%%Title: (Example.art)

%%CreationDate: (2/08/90) (8:30 am)
%%DocumentNeededResources: procset Adobe_packedarray 0 0
%%+ procset Adobe_cmykcolor 0 0 Adobe_cshow 0 0 Adobe_customcolor 0 0
%%+ procset Adobe_Illustrator881 0 0

%%+ font StoneSerif

%%EndComments

%%BeginProlog

%%lncludeResource: procset Adobe_packedarray 0 0
%%lncludeResource: procset Adobe_cmykcolor 0 0
%%lncludeResource: procset Adobe_cshow 0 0
%%lncludeResource: procset Adobe_customcolor 0 0
%%lncludeResource: procset Adobe_lllustrator881 0 0
%%EndProlog

...Rest of the document...

%%EOF

6 Requirement Conventions 71

6.3 Requirement Page Comments

Some of the following comments that request particular page media, require-
ments, or resources may appear in the defaults section or in a particular page.
If these comments fall within the defaults section of the document file
(9%%BeginDefaults to %%EndDefaults), they may be construed to be ifeet

for the entire print job. If they are found within the page-level comments for a
page, they should only be infedt for that page. See%Begin(End)Defaults

for more details on page defaults.

%%PageFonts: { <fontname> ... } | (atend)

Indicates the names of all fonts used on the current page. The notation
(atend) is permissible. In that case, the list of fonts must be provided after
the %%PageTrailer comment. Also see tle%DocumentFonts: comment.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%PageResources: comment instead.

%%PageFiles: { <filename> ... } | (atend)

Indicates the names of all files used on the current page. This should be used
only if file inclusion is required of the document manager—that is, if there

are subsequent instances of ##IncludeFile: comment on that particular

page. See alsw¥%DocumentNeededFiles: and%%DocumentSuppliedFiles:
comments.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%PageResources: comment instead.

%%PageMedia: <medianame>
<medianame> ::= <text> (Name of desired paper media)

Indicates that the paper attributes denotethbygtianame are invoked on this
page. Thenedianame is specified by thes%DocumentMedia: comment at

the beginning of the document. This comment can pertain to either a page or
a document depending on the position of the comment (for example, either in
the page itself or in the defaults section). See als@#iPocumentMedia:
and%%Begin(End)Defaults comments.

In Example 9, a one-hundred page report is printed on regular white and
heavy yellow paper. Ninety-nine of the pages use the white paper so the
%%PageMedia: comment is found in the defaults section, denoting that the
default media for this document is white paper. The white paper is set using
thesetpagedevice operator in the document setup. The cover page is the
only page to use the yellow paper, and states so via¥tageMedia:

72 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

comment that appears after the fugbPage: comment. Note the use of the
currentpagedevice operator to facilitate the restoration of the white-paper
device after the cover page.

Example 9

%!PS-Adobe-3.0

%%Title: (Example of %%PageMedia: as a page default)
%%DocumentMedia: Regular 612 792 75 white ()
%%+ Cover 612 792 244 yellow DeptLetterHead
%%Pages: 100

%%Languagelevel: 2

%%EndComments

%%BeginDefaults

%%PageMedia: Regular

%%EndDefaults

%%BeginProlog

...Prolog definitions...

%%EndProlog

%%BeginSetup

% Attribute tray numbers to

/InputAttributes << % the particular media
0 << /PageSize [612 792] /IMediaWeight 75 /MediaColor (white) >>
1 << /PageSize [612 792] /MediaWeight 244

/MediaColor (yellow) /MediaType (DeptLetterHead) >>

>> setpagedevice

<< /MediaColor (white) >> setpagedevice % Set the white paper to be the
%%EndSetup % default for the document
%%Page: Cover 1

%%PageMedia: Cover

%%BeginPageSetup

/olddevice currentpagedevice def

<< /MediaColor (yellow) >> setpagedevice % Set up the yellow paper
/pagelevel save def % for this page
%%EndPageSetup

...Mark the cover page...

pagelevel restore

%%PageTrailer

olddevice setpagedevice % Restore the white paper
%%Page: 1 2

...Rest of the document... % No %%PageMedia:

% comment, white letter paper
% is the default

6 Requirement Conventions 73

%%PageRequirements: <requirement> [(<style>)] ...
<requirement> ::= collate | color | duplex | faceup | fax | fold | jog |
manualfeed | numcopies | punch | resolution | rollfed |
staple
<style> .= <text>

This is the page-level invocation of a combination of the options listed in

the %%Requirements: comment. It takes precedence over any document
requirements set during the document setup. This comment can pertain to a
page or a document depending on the position of the comment (either in the
page itself or in the defaults section). Seedt&Requirements: and
%%Begin(End)Defaults comments.

%%PageResources: { <resource> ... } | (atend)

This comment indicates the names and values of all resources that are needed
or supplied on the present page (procsets are an exception; they need not be
listed). This comment can pertain to an individual page or a document,
depending on the location of the comment. For example, the comment may
be in the page itself or in the document defaults section. See the
%%DocumentSuppliedResources:, %%DocumentNeededResources:,
and%%Begin(End)Defaults comments.

74 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

7 Color Separation Conventions

Level 2 implementations and Level 1 implementations that contain the
CMYK color extensions to the PostScript language provide more complete
color functionality than the RGB color model in Level 1. There are corre-
sponding color separation comments that programs producing PostScript
language documents with color operators should use. Color separation
applications can use these comments as an aid in proper color determination
and to identify process color specific portions of PostScript language code.
These comments can also be used to enable applications to communicate
spot color usage.

Note These comments do not address the use of CIE based and special color
spaces. Expect future versions of the DSC to do so.

7.1 Color Header Comments

%%CMYKCustomColor: <cya> <mag> <yel> <blk> <colorname>

<cya> .. = <reab (Cyan percentage)
<mag> ::= <reab (Magenta percentage)
<yeb ::= <reab (Yellow percentage)
<blk> ::= <reab (Black percentage)
<colorname> ::= <text> (Custom color name)

This comment provides approximationof the custom color specified by
colorname. The four components of cyan, magenta, yellow, and black must
be specified as numbers from 0 to 1 representing the percentage of that proces
color. The numbers are similar to thgaments to theetcmykcolor operator

The colorname follows the same custom color naming conventions as the
%%DocumentCustomColors: comment.

%%DocumentCustomColors: { <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in a document. An applica-
tion arbitrarily names these colors, and their CMYK or RGB approximations
are provided through th®%CMYKCustomColor: or %%RGBCustomColor:
comments in the body of the document. Normally,ddiername specified

can be any arbitrary string exceptan, Magenta, Yellow, or Black. If

imaging to a specific process layer is desired, these names may be used.

%%DocumentProcessColors: { <color> ... } | (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the document.
Process colors are defined todyan, Magenta, Yellow, andBlack.

This comment is used primarily when producing color separations.
See als@o%PageProcessColors:.

7 Color Separation Conventions 75

%%RGBCustomColor: <red> <green> <blue> <colorname>

<red> ::=<real> (Red percentage)
<green> ::= <real> (Green percentage)
<blue> ::= <real> (Blue percentage)
<colorname> ::= <text> (Custom color name)

This comment provides approximationof the custom color specified by
colorname. The three components @i, green, andblue must be specified

as numbers from 0 to 1 representing the percentage of that process color.
The numbers are similar to the arguments taévgbcolor operator.

The colorname follows the same custom color naming conventions as the
%%DocumentCustomColors: comment.

7.2 Color Body Comments

%%BeginCustomColor: <colorname>
<colorname> ::= <text> (Custom color name)

%%EndCustomColor (no keywords)

These comments specify that the PostScript language code fragment enclosed
within should be interpreted only when rendering the separation identified by
colorname. The colorname here is any text string excepyan, Magenta,

Yellow, andBlack (see the exception #%DocumentCustomColors:).

During color separation, the code between these comments must only be
downloaded during the appropriate pass for that custom color. Intelligent
printing managers can save considerable time by omitting code within these
bracketing comments during any other separations. The document composi-
tion software must be extremely careful to correctly control overprinting and
knockouts if these comments are employed, because the enclosed code may
or may not be executed.

Note Inthe absence of a document manager that understands these comments,
the document will print incorrectly. These comments should be used only if
the environment supports such a document manager.

76 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%BeginProcessColor:

%%EndProcessColor

Note

7.3

%%PageCustomColors:

%%PageProcessColors:

<color>
<color> ::= Cyan | Magenta | Yellow | Black

(no keywords)

These comments specify that the PostScript language code fragment enclosed
within should be interpreted only when rendering the separation identified by
color. During color separation, the code between these comments must be
downloaded only during the appropriate pass for that processlntddigert

printing managers can save considerable time by omitting code within these
bracketing comments on the other three separations. The document composi-
tion software must be extremely careful to correctly control overprinting and
knockouts if these comments are employed, because the code may or may not
be executed.

In the absence of a document manager that understands these comments,
the document will print incorrectly. These comments should only be used if
the environment supports such a document manager.

Color Page Comments

{ <colorname> ... } | (atend)
<colorname> ::= <text> (Custom color name)

This comment indicates the use of custom colors in the page. An application
arbitrarily names these colors, and their CMYK or RGB approximations are
provided through th&%CMYKCustomColor: or %%RGBCustomColor:;
comments in the body of the document. Se&dt®ocumentCustomColors:
comment.

{ <color> ... }| (atend)
<color> ::= Cyan | Magenta | Yellow | Black

This comment marks the use of process colors in the page.
Process colors are defined@an, Magenta, Yellow, andBlack.
See thev%DocumentProcessColors: comment.

7 Color Separation Conventions 77

8 Query Conventions

A queryis any PostScript language program segment that generates and
returns information back to the host computer across the communications
channebeforea document can be formatted for printing. This might result
from the execution of any of the==, print orpstack operators, for instance

In particular this definition covers information that is expedvedk from the
PostScript printer for decision-making purposes. Such degisaking might
include the generation of font lists or inquiries about the availability of
resources, printer features, or the like.

All guery conventions consist ofeginandendconstruct, with the keywosd
reflecting the type of query. For all of them, th&?EndQuery comment

should include a field for defaultvalue, which document managers must
return if they cannot understand or do not support query comments. The
value of the default is entirely application dependent, and an application
can use it to determine specific information about the spooling environment,
if any, and to take appropriate default action.

8.1 Responsibilities

A document manager that expects to be able to interpret and correctly spool
documents conforming to DSC version 3.0 must, at a minimum, perform cer-
tain tasks in response to these query conventions. In general, it must recog-
nize the queries, remove them from the print stream, and send some reply
back to the host. If a document manager cannot interpret the query, it must
return the value provided as the argument t@#4#?EndQuery comment.

A query can be recognized by the sequenee?Begin followed by any
number of characters (up to the 255 maximum per line, by convention)
through the end-of-line indication (tkeis decimal ASCII 37, and the

is decimal ASCII 63). The end of the query is delimited by the sequence
%%?End followed by some keywords, and optionally followed by a colon
(: is decimal ASCII 58) and the default response to the query (any text
through end-of-line). A document manager should try to recognize the
full query keyword, such &%%?BeginResourceQuery:, if it can, but it is
obligated at least to respond to any validly formed query.

If a more intelligent query handling interface is desired, the document
manager must recognize which printer the application is printing to
(the%%DocumentPrinterRequired: comment may be helpful in this case).

By using the PPD file for that particular printer, the known printer network
configuration, and the printer status, the document manager should be able
to answer the query.

78 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

8.2

%!PS-Adobe-3.0 Query

Note

%%?BeginFeatureQuery:

%%?EndFeatureQuery:

Query Comments

(no keywords)

A PostScript language query must be sent as a separate job to the printer to
be fully spoolable. This means thateard-of-fileindication must be sent
immediately after the query job. A query job must always begin with the
%!PS-Adobe-3.0 Query convention, which further qualifies the file as being

a special case of a version 3.0 conforming PostScript language file. A query
job contains only query comments, and need not contain any of the other
standard structuring conventions. A document manager must be prepared to
extract query information from any print file that begins with this comment
convention. A document manager must fully parse a query job file until the
EOF indication is reached.

It is permissible to include more than one query in a print job, but it is not
permissible to include queries within the body of a regular print job. It
cannot be guaranteed that a document manager can properly handle a print
job with embedded queries.

< featuretype> [<option>]

<featuretype> ::= <text> (Requested feature)
<option> ::= <text> (Feature option)

< default>
<default> ::= <text> (Default response)

This query provides information that describes the state of some specified,
printerspecific feature as defined by the PostScript printer description (PPD)
file. Thefeaturetype field identifies the keyword as found in the PPD file. The
standard response varies with the feature and is defined by the printer's PPD
file. In general, the value of tRéeaturetype> or the value okoption> associ-

ated with the feature should be returned. In the example that follows, the PPD
file keywordsTrue or False are returned:

%%?BeginFeatureQuery: *InputSlot manualfeed
statusdict /manualfeed known {
statusdict /manualfeed get { (True) ¥ (False) } ifelse

X
(None)

} ifelse = flush

%%?EndFeatureQuery: Unknown

8 Query Conventions 79

%%7?BeginFileQuery: < filename>

%%7?EndFileQuery: < default>
<default> ::= <text> (Default response)

The PostScript language code between these comments causes the printer
to respond with information describing the availability of the specified file.
This presumes the existence of a file system that is available to the PostScript
interpreter, which is not the case on all implementations. The standard
response consists of a line containing the file name, a colon, andveither

or No, indicating whether the file is present.

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%7?Begin(End)ResourceQuery: comments instead.

%%?BeginFontListQuery (no keywords)

%%7?EndFontListQuery: < default>
<default> ::= <text> (Default response)

Provides a PostScript language sequence to return a list of all available fonts.
It should consult theontDirectory dictionary and any mass storage devices
available to the interpreter. The list need not be in any particular order, but
each name should be returned separated by a/slaahacter. This is nor-

mally the way the PostScript operator returns a font name. All white space
characters should be ignored. The end of the font list must be indicated by a
trailing * (asterisk) sign on a line by itself (decimal ASCII 42).

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%7?Begin(End)ResourcelListQuery: comments instead.

%%7?BeginFontQuery: < fontname> ...

%%7?EndFontQuery: < default>
<default> ::= <text> (Default response)

This comment provides a PostScript language query that should be combined
with a particular list of font names being sought. It looks for any number of
names on the stack and prints a list of values depending on whether the font
is known to the PostScript interpreter. The font names must be provided on
the operand stack by the document manager. This is done by simply sending
the names, with leading slasbharacters, before sending the query itself.

To prevent the document manager from having to keep track of the precise
order in which the values are returned and to guard against errors from
dropped information, the syntax of the returned véatoatName:Yes

or /FontName:No, with no space between the colon and the following word.

80 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

%%?BeginPrinterQuery

%%?EndPrinterQuery:

Each font in the list is returned this wdihe slashes delimit the individually
returned font names, although newlines should be expected (and ignored)
between them. A final(asterisk) character follows the returned values.

This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%7?Begin(End)ResourceQuery: comments instead.

(no keywords)

< default>

<default> ::= <text> (Default response)

This comment delimits PostScript language code that returns information
describing the printer’product name, versiomndrevisionnumbers. The
standard response consists of the printer’s product name, version, and revi-
sion strings, each of which must be followed by a newline character, which
must match the information in the printer’s printer description file. This
comment may also be used to identify the presence of a spooler, if
necessary. In the following example the default response as represented

in the%%?EndPrinterQuery: line is the wordspooler, which would be

returned by spooling software ttditl nothave a specific printer type

attached to it.

%%?BeginPrinterQuery
statusdict begin
revision == version == productname == flush
end
%%?EndPrinterQuery: spooler

8 Query Conventions 81

%%?BeginProcSetQuery: < procname>

%%?EndProcSetQuery: < default>
<default> ::= <text> (Default response)

These comments delimit a procset query. The combination atthe

version, andrevision fields must uniquely identify the procset. The standard
response to this query consists of a line containing any of the values
where a value d means the procsetfsissing a value oft means the
procset igpresent and OKand a value df indicates the procset is present
but is an incompatible version. Note that methods for procset queries are
procset specific.

%%?BeginProcSetQuery: adobe_distill 1.1 1

/adobe_distill_dict where {
begin mark VERSION (1.) anchorsearch {(1)}{(2)} ifelse cleartomark
end

X
)
} ifelse print flush
%% ?EndProcSetQuery: unknown

Note This comment is provided for backward compatibility and may be
discontinued in later versions of the DSC. Use the more general
%%7?Begin(End)ResourceQuery: comments instead.

%%7?BeginQuery: < identifier>
<identifier> ::= <text> (Query identifier)

%%?EndQuery: < default>
<default> ::= <text> (Default response)

These comments are for very general purposes and may serve any function
that the rest of the query conventions, which are very specific, do not
adequately cover. To understand and intelligently respond to a query, a
document manager must semantically understand the query. Therefore,
specific keywords, such a&o0?BeginPrinterQuery, are used. When the
generic%%?BeginQuery comment is encountered, a spooler may be forced
to return the default value. The comment is included primarily for large
installations that must implement specific additional queries not covered
here, and which will likely implement the document composition software
and the document manager software.

%% ?BeginResourceListQuery: font | file | procset | pattern | form | encoding
%%EndResourceListQuery: < text>

These comments delimit a segment of PostScript language code that returns a
list of all available resources. Thegaments specify which type of resources
to return. The code that these comments delimit should consult local VM,

82 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

global VM, and any mass storage devices available to compile a complete list
of resources. The resulting list need not be in any particular order, but the
syntax of the returned values is tesource typdollowed by theresource

name The end of the resource list must be indicated by a trailing * (asterisk)
on a line by itself.

Note that font names must be returned with a slash / character in front of each
font name.

The use of this type of query is discouraged because it can be time consuming
for interpreters with many accessiblesouces (for example, a printer with a

hard disk attached). It is far better to query for individugsouces by using

the %%?Begin(End)ResourceQuery: comment.

%%?BeginResourceQuery: <resource>...

%%?EndResourceQuery:

Note

<default>

<default> ::= <text> (Default response)

The PostScript language code between these comments causes the printer
to respond with information describing the availability of the specified
resources. This code looks for any number of resource names on the stack,
and prints a list of values depending on whether the resource is known to
the PostScript interpreter.

The document manager could also process this query by using information
known about the print network and current printer status. To reduce the
overhead involved in keeping track of the precise order in which values are
returned, and to guard against errors from dropped information, the syntax of
the returned value is tliesouce typeandnamefollowed by a colon, a space

and then ges or ano. The end of the list should be denoted by a *.

It is recommended that a separate resource query be used for each type of
resource.

8 Query Conventions 83

A file resource query presumes that a file system is available to the PostScript
interpreter. This is not the case in all implementations. Example 10 shows a
typical font resource query:

Example 10

%!PS-Adobe-3.0 Query
%%Title: (Resource query for specified fonts)
%%?BeginResourceQuery: font Times-Roman Adobe-Garamond StoneSerif
/Times-Roman
/Adobe-Garamond
/StoneSerif
%%BeginFeature: *?FontQuery
save 4 dict begin /sv exch def
/str (fonts/) def
/st2 128 string def
{
count O gt {
dup st2 cvs (Font /) print print
dup FontDirectory exch known
{pop (: Yes) }
{ strexch st2 cvs
dup length /len exch def
6 exch putinterval str 0 len 6 add getinterval mark exch
{} st2 filenameforall counttomark
0 gt {? cleartomark (: Yes) K cleartomark (: No) }ifelse
} ifelse = flush
H exit } ifelse
} bind loop
(*) = flush
sv end restore
%%EndFeature
%%?EndResourceQuery: Unknown
%%EQOF

The output from this sample program could be:
Font /StoneSerif: Yes

Font /Adobe-Garamond: No
Font /Times-Roman: No

*

84 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

%%?BeginVMStatus (no keywords)

%%?EndVMStatus: < default>
<default> ::= <text> (Default response)

This comment delimits PostScript language instructions that return the state
of the PostScript interpreter’s VM. The standard response consists of a line
containing the results of the PostScript languamgstatus operator as shown

in Example 11:

Example 11

%!PS-Adobe-3.0 Query
%%Title: (VM status query)
%%?BeginVMStatus
vmstatus

(Maximum:) print =

(Used:) print =

(Save Level:) print = flush
%%?EndVMStatus: Unknown
%%EOF

8 Query Conventions 85

9 Open Structuring Conventions

There is an open extension mechanism for the DSC comments. Its purpose
is to enable other vendors to extend the functionality of the DSC without
having to rely on Adobe to amend the official specification.

Vendors may need or want to embed extra information in a file beyond the
comments that Adobe has already specifieda€ilitate this and to minimize
conflicts and dffculties for the vendgAdobe maintains a registry of comrhen
prefixes that are allocated to vendors, and these comments may be used in
any way that is meaningful to those vendors. You may contact the registry
at the following address:

Adobe Systems Incorporated
DSC Coordinator

1585 Charleston Road

P.O. Box 7900

Mountain View, CA 94039-7900
(415) 961-4400

9.1 The Extension Mechanism

All existing Adobe-specified comments in the DSC begin with the same
prefix, except one. Here is a quick summary of the syntax of existing
comments:

The first line of a PostScript language file must, by convention, begin with
the character®! (percent and exclamation, often referred to as “percent-
bang”). If the file is a conforming file, meaning that it conforms to the DSC
version 3.0, then it is further qualified wit$-Adobe-3.0. This may be
optionally continued by some special keywords, sudtP&s or ExitServer,

to identify the entire file as a special instance. The first line of a PostScript
language file may look something like this:

%!PS-Adobe-3.0 EPSF 3.0

This is the only Adobe-defined comment that doathegin with two
percent signs.

All remaining structuring conventions, in their various forms, are represented
as comments beginning witivo percent signg4%) as the first characters on
the line.

The extension mechanism for the open structuring conventions is to use one
percent character followed immediately byeamdor-specifigrefix of up to

five characters. Beyond those five characters the vendor who has registered
the prefix is responsible for the comments. The comment is terminated at the
end of the line.

86 PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Note

Open structuring conventions may be used much like the existing DSC and
have similar syntax and philosophy. Here are some exampliesitadus
comments from made-up company prefixes:

%GCRImageName: myimage.ps
%BCASpoolerName: local_spool 1.0
%BCACoverStock: 10129
%BCADocumentOrigin: (New York Office)

Restrictions

Adobe does not specify where in the document open structuring convention
comments can appear. However, the comments must not conflict in any way
with the regular parsing of document structuring conventions, and their
specification and use is otherwise truly open.

If these vendor-specific comments interact in some meaningful way with
the DSC, this interaction should be clearly specified by the creator of the
comments, and the description should specify the version number of the
DSC with which they interact.

The new comments, however implemented, should still follow the confgprmin
files restrictions discussed in section 3, “DSC Conformance.”

Parsing Rules

Although the exact syntax of the vendor-specific comments is up to the
vendor, we strongly recommend adhering to the existing conventions and
parsing rules to simplify the task of writing parsing software.

The syntax and parsing rules for vendor-specific comments are up to the
vendor, and you should contact the vendor for details. The rules and details
supplied in this document are guidelines and suggestions that are recom-
mended, but are not enforced by Adobe.

9 Open Structuring Conventions 87

88

%%BeginExitServer:

%%EndEXxitServer

10 Special Structuring Conventions

There are two comments that do not readily fall into the other comment
categories. They are listed below, along with a description of when they
should be used.

< password>
<password> ::= <text>

(no keywords)

These comments delimit the PostScript language sequence that causes the
rest of the file to be executed as an unencapsulated job (see section 3.7.7,
“Job Execution Environment” of tHeostScript Language Reference

Manual, Second EditignThis convention is used to flag any code that

sets up or executes thgitserver orstartjob operators, so a document
manager can recognize and remove this sequence if necessary. The
%%Begin(End)ExitServer comments may be used with #@EOF

requirement convention to pinpoint where the document manager should
send an end-of-file indication. See #h#S-Adobe-3.0 comment. PostScript
language jobs that useitserver orstartjob should be specially flagged

with the%!PS-Adobe-3.0 ExitServer notation. An example of appropriate

use is shown in the following example:

%!PS-Adobe-3.0 ExitServer

%%Title: (Example of exitserver usage)
%%EndComments

%%BeginExitServer: 000000

serverdict begin 000000 exitserver
%%EndExitServer

...PostScript language instructions to perform
persistent changes...

%%EOF

PostScript Language Document Structuring Conventions Specification (25 Sep 92)

Al

All

Appendix A: Changes
Since Earlier Versions

This content of this document is the same as the specification in Appendix G
of thePostScript Language Reference Manual, Second Edifiois docu-

ment tracks the changes made in subsequent printings Rb#tScript Lan-
guage Reference Manual, Second Editiod those that are listed in

Technical Note #5085, “Updates to the PostScript Language Reference
Manual, Second Edition.”

Changes Since Earlier Versions

The following section details changes made to the DSC specification since
version 1.0 (Appendix C in the first edition of fRestScript Language

Manual). These changes are important to document managers that may wish
to allow backward compatibility with previous versions of this specification.

Changes Since Version 1.0

In DSC version 1.0, there were several comment conventions that were
required to minimally conform to that version of the specification. These
comments were;

%%DocumentFonts:
%%EndProlog
%%Page:
%%Trailer

As of version 2.1, there no longer are aaguiredcomments. All comments
are optional in the sense that they may not be appropriate in a given situation.
The only rule is to make sure to use them correctly.

The following comments were added as of version 2.1:

%%Begin(End)Binary:
%%Begin(End)CustomColor:
%%Begin(End)Document:
%%Begin(End)ExitServer:
%%Begin(End)Feature:

99

%%Begin(End)File:
%%Begin(End)Font:
%%Begin(End)Object:
%%Begin(End)PageSetup:
%%Begin(End)PaperSize:
%%Begin(End)ProcessColor:
%%Begin(End)ProcSet
%%Begin(End)Setup
%%CMYKCustomColor:
%%DocumentCustomColors:
%%DocumentNeededFiles:
%%DocumentNeededFonts:
%%DocumentNeededProcSets:
%%DocumentPaperColors:
%%DocumentPaperSizes:
%%DocumentPaperForms:
%%DocumentPaperWeights:
%%DocumentPrinterRequired:
%%DocumentProcSets:
%%DocumentProcessColors:
%%DocumentSuppliedFiles:
%%DocumentSuppliedFonts:
%%DocumentSuppliedProcSets:
%%ExecuteFile:
%%lIncludeFile:
%%lIncludeFont:
%%IncludeProcSet:

%%EOF

%%Feature:
%%PageBoundingBox:
%%PageCustomColors:
%%PageFonts:

%%PageFiles:
%%PageProcessColors:
%%PageTrailer
%%PaperColor:
%%PaperForm:
%%PaperSize:

%% PaperWeight:
%%ProofMode:
%%Requirements:
%%RGBCustomColor:
%%Routing:
%%?Begin(End)FeatureQuery:
%%?Begin(End)FileQuery:
%%?Begin(End)FontQuery:
%%?Begin(End)FontListQuery:
%%?Begin(End)ProcSetQuery:
%%?Begin(End)PrinterQuery:
%%?Begin(End)Query:
%%?Begin(End)VMStatus:

100 Appendix A: Changes Since Earlier Versions (25 Sep 92)

Al2

The following comment was discontinued in version 2.1 and should be
ignored by document managers:

%%ChangeFont:

Changes Since Version 2.1

The DSC version 3.0 specification has been reorganized as a whole to better
present the concepts. The first half of the specification is a how-to guide and
discusses why the comments should be used. The second half is a reference,
detailing the comments.

The introduction introduces the concepts of a document manager and how a
document manager might use the comments.

A new section talks about the various services a document can receive from a
document managerhese services can be obtained through proper use of the
DSC comments. Services include spooling, banner and trailer pages, print
logging, resource inclusion, resource downloading, resource optimization,
error reporting and recovery, printer rerouting, feature inclusion, parallel
printing, color breakout, page reversal, n-up printing, range printing, collated
printing, and overlays. See section 2, “Document Manager Services.”

The section detailing DSC conformance has been expanded and is more
precise. A document either conforms or does not conform to this specifica-
tion. See section 3, “DSC Conformance.”

A new section describing proper document structure was added. In particular
the placement of various comments in the document is discussed as are
restrictions on the prolog and script. See section 4, “Document Structure
Rules.”

A section detailing the breakdown of conventions into different categories
was added, as well as detailed explanations of header, body and page
comment types. The comments are arranged in the reference section of
the document according to these categories. See section 4.5, “Convention
Categories.”

The syntax of the DSC comments was qualified in Backus-Naur form (BNF)
to avoid ambiguities. A new section of the document talks about BNF and
defines some elementary types. See section 4.6, “Comment Syntax Réference.

The open structuring conventions are new as of this version. They define an
extensible mechanism for defining vendor-specific comments. See section 9,
“Open Structuring Conventions.”

A.1 Changes Since Earlier Versions 101

New Comments For Version 3.0

The following comments were added as of version 3.0:

%%Begin(End)Data:
%%Begin(End)Defaults
%%Begin(End)Emulation:
%%Begin(End)Preview:
%%BeginProlog
%%Begin(End)Resource:
%%Copyright:
%%DocumentData:
%%DocumentMedia:
%%DocumentNeededResources:
%%DocumentSuppliedResources:
%%Emulation:

%%Extensions:
%%IncludeDocument:
%%IncludeFeature:
%%lncludeResource:
%%LanguageLevel:
%%Operatorintervention:
%%OperatorMessage:
%%0Orientation:

%%PageMedia:

%%PageOrder:
%%PageOrientation:
%%PageRequirements:
%%PageResources:

%%Version

%%V Mlocation:

%%VMusage:
%%?Begin(End)ResourceQuery:
%%?Begin(End)ResourceListQuery:

There are three justifications for the addition of%%BeginProlog com-

ment. Previously, the beginning of the prolog section of the document was
implicitly declared after thes%EndComments comment. This was confugin

in the case of EPSI files that needed to insert the EPSI preview after the com-
ments and before the prolog, which was defined as th&ofisBeginProcSet:
comment. In addition, there may be instances when a document does not
need formal procset definitions, but needs a prolog. Finally, in the interest of
language purity, a correspondittoBegin comment is hecessary for each
%%End comment. Expect to see this pairing of comments in future revisions
of the DSC.

102 Appendix A: Changes Since Earlier Versions (25 Sep 92)

Changes to Existing Comments

%!PS-Adobe-3.0

In addition to changing the version number from 2.1 to 3.0, the new EPSF
version number was added, as well as a general format keyword for
resources.

%%Pages:

The optionapageordemumber at the end of the comment is no longer
recommended (-1 indicated descending order, 0 indicated special order, and

1 indicated ascending order). There have been cases of conflicts between pre-
knowledge of page orders and page numbers; in other words, an application
may not know the number of pages, and wishes to defer this comment to the
end of the document, but it may already know the page.dtdriewers and

other document managers gain an advantage if they know the page order as
soon as possible. If page order must be specified, it is recommended that it be
done using thes%PageOrder: comment.

%%Begin(End)Binary:

There has been some confusion with this comment. Both hex and 8-bit binary
data has been seen between these comments. There also have been some
cases in which the byte count argument to this comment has been used to
specify the number of lines of data. A new comm&gBegin(End)Data:,

has been introduced to deal with these ambiguities. The new comment may
also be extended in future versions of the DSC to deal with compression and
other filters, so a document manager can handle special filtering on Level 1
implementations.

%%Requirements:

The idea of optiostylesis introduced. These styles modify the requirement
option in some manner. For exampdench(3) indicates that the printer
needs to support 3 hole punching. Similadlyplex(tumble) indicates that

the printer must be able to perform tumble duplexing.

New options includenanualfeed, numcopies, collate, jog, faceup, resolution,
rollfed, fax, andpunch. They reflect the additional functionality added by the
Level 2setpagedevice operator.

Deleted options includsimplex, punch3, punch5. Thesimplex option is
redundant becausediiplex is not specified as a requirement, simplex is
implied. Thepunch3 andpunch5 options have been superceded by the idea of
style modifiers (see above).

A.1 Changes Since Earlier Versions 103

%%Begin(End)Document:

There has been a note added to this comment indicating that feature and
resource requirements of an included document should be inherited by the
including document.

%%ExecuteFile:
This comment has been renan¥&®includeDocument to better reflect its
meaning.

%%Feature:
This comment has been renans&¥includeFeature: to more clearly express
its dependence on the document manager.

Discontinued Comments For Version 3.0

%%BeginPaperSize:
%%EndPaperSize
The comment%:%BeginFeature: and%%EndFeature should be substituted.

%%DocumentPaperColors:

%%DocumentPaperForms:

%%DocumentPaperSizes:

%%DocumentPaperWeights:

These comments have been replaced by the sistgl@2ocumentMedia: com-
ment. This new comment addresses two shortcomings of DSC version 2.1.
First, the new comment provides the linkage among the various parameters
describing an output medium. Second, a generalized portable methodology
for describing paper is provided.

For document managers concerned with backward compatibility, the
following comments

%%DocumentPaperColors: white buff pink
%%DocumentPaperForms: Plain Plain CorpLetterHead
%%DocumentPaperSizes: letter letter legal
%%DocumentPaperWeights: 20 65 20

can be converted to
%%DocumentMedia: Wplain 612 792 75 white
%%+ Bplain 612 792 244 buff
%%+ CLHpink 612 1008 75 pink CorpLetterHead

Note that in version 2.1 there was no explicit link among the listrdragnts
and the other comments. The document manager will have to use a best-guess
method of conversion or ignore these comments entirely.

104 Appendix A: Changes Since Earlier Versions (25 Sep 92)

%%PaperColor:

%%PaperForm:

%%PaperSize:

%%PaperWeight:

The individual paper-request comments are now replaced with the single
%%PageMedia: comment.

Document managers trying to maintain backward compatibility should match
the %%DocumentMedia: comment with its old counterparts (see above).
%%PageMedia: will use the names of the different media specified in
%%DocumentMedia: to specify changes in media. The paper comments for
forms, colors, and weights should be replaced with the corresponding
%%PageMedia: comment.

A.1 Changes Since Earlier Versions 105

106 Appendix A: Changes Since Earlier Versions (25 Sep 92)

B.1

Note

B.1.1

Appendix B: DSC Version
3.0 Summary

DSC Version 3.0 Summary

The following summary lists the comments that comprise version 3.0 of the
document structuring conventions.

Some comments in this document may be discontinued in future versions
of the DSC and are not found in this list. However, they are in the body of
the document for backward compatibility with existing applications and
document managers. Their use is discouraged; they will eventually be
omitted from the specification.

General Conventions

General Header Comments

%!PS-Adobe-3.0
%%BoundingBox:
%%Creator:
%%CreationDate:
%%DocumentData:
%%DocumentPrinterRequired:
%%Emulation:
%%EndComments
%%Extensions:

%%For:

%%\Version:
%%Copyright:
%%LanguagelLevel:
%%Operatorintervention:
%%OperatorMessage:
%%Orientation:
%%Pages:

%%Routing:

%%Title:

99

General Body Comments

%%+
%%Begin(End)Data:
%%Begin(End)Defaults
%%Begin(End)Emulation:
%%Begin(End)ExitServer:
%%Begin(End)Preview:
%%Begin(End)Prolog
%%Begin(End)Setup

General Page Comments

%%Begin(End)Object:
%%Begin(End)PageSetup:
%%Page:
%%PageBoundingBox:
%%PageOrientation:

General Trailer Comments

%%PageTrailer
%% Trailer
%%EOF

B.1.2 Requirement Conventions

Requirement Header Comments

%%DocumentMedia:
%%DocumentNeededResources:

%%DocumentSuppliedResources:

%%Requirements:
%%ProofMode:
%%VMlocation:
%%VMusage:

Requirement Body Comments

%%Begin(End)Document:
%%Begin(End)Feature:
%%Begin(End)Resource:
%%EOF
%%lIncludeDocument:
%%IncludeFeature:
%%IncludeResource:

100 Appendix B: DSC Version 3.0 Summary

(25 Sep 92)

Requirement Page Comments

%%PageMedia:
%%PageRequirements:
%%PageResources:

B.1.3 Color Separation Conventions

Color Header Comments

%%CMYKCustomColor:
%%DocumentCustomColors:
%%DocumentProcessColors:
%%RGBCustomColor:

Color Body Comments

%%Begin(End)CustomColor:
%%Begin(End)ProcessColor:

Color Page Comments

%%PageCustomColors
%%PageProcessColors

B.1.4 Query Conventions

%!PS-Adobe-3.0 Query
%%?Begin(End)FeatureQuery:
%%?Begin(End)PrinterQuery:
%%?Begin(End)Query:
%%?Begin(End)ResourceQuery:
%%?Begin(End)ResourceListQuery:
%%7?Begin(End)VMStatus:

B.1 DSC Version 3.0 Summary 101

102 Appendix B: DSC Version 3.0 Summary (25 Sep 92)

Index

Symbols

#copies
collated printing and 10
document copies and 20

% comment syntax 2

%! comment syntax 15

%!PS-Adobe-3.0 32-33
conforming documents and 11
non-conforming documents and

15

%!PS-Adobe-3.0 Query 79

%% comment syntax 2

%%+ comment syntax 38
line length and 19

A

(atend) 27-28
scriptand 18

B

banner pages 5
%%BeginBinary: 38-39
%%BeginCustomColor: 76
%%BeginData: 39-40
%%BeginDefaults 41-43
%%BeginDocument: 62
%%BeginEmulation: 43
%%BeginExitServer: 88
%%BeginFeature: 63
%%?BeginFeatureQuery: 79
%%BeginFile: 64
%%7?BeginFileQuery: 80
%%BeginFont: 64
%%7?BeginFontListQuery 80
%%7?BeginFontQuery: 80-81
%%BeginObject: 46

%%BeginPageSetup 46
%%BeginPreview: 44
%%7?BeginPrinterQuery 81
%%BeginProcessColor: 77
%%BeginProcSet: 65
%%?BeginProcSetQuery: 82
%%BeginProlog 44-45
%%?BeginQuery: 82
%%BeginResource: 66-67
%%?BeginResourceListQuery: 82
%%?BeginResourceQuery: 83-84
%%BeginSetup 45
%%?BeginVMStatus 85

BNF (Backus-Naur form) 26

body comments (DSC) 25
%%BoundingBox: 33

C

changes

DSC 89-95
%%CMYKCustomColor: 75
collated printing 10
color body comments 76-77, 98
color header comments 75-76, 98
color page comments 77, 98
color separation convention24, 75—

77,98

comment(s) 2
conforming documents 11-14
conventions

document structuring 1-98
#copies

collated printing and 10

document copies and 20
copypage

document copies and 20
%%Copyright: 33
%%CreationDate: 34

101

%%Creator. 34

D

defaults section (DSC) 16

device-dependent page description .

document manager services 5-10
document structure 12-13, 16-31
constraints 18-21
page independence 18-19
prolog 16-17
restricted operators 21
script 17
document structuring conventions
(DSC) 1-98
categories of 23-26
changesto 89-95

E

%%Emulation: 35
%%EndBinary 38-39
%%EndComments 35
header comments and 25
prolog and 16
%%EndCustomColor 76
%%EndData 39-40
%%EndDefaults 41-43
%%EndDocument 62
%%EndEmulation 43
%%EndExitServer 88
%%EndFeature 63
%%?EndFeatureQuery: 79
%%EndFile 64
%%?EndFileQuery 80

color separation conventions 75-%%EndFont 64

77
conformance 11-15
general conventions 32-48

%%?EndFontListQuery 80
%%?EndFontQuery 80-81
%%EndObject 46

open structuring conventions 86-%%EndPageSetup 46

87

guery conventions 78-85

requirement conventions 49-74

special structuring conventior38

summarized 96-98

syntax 26-31

using 4
document trailer 18
%%DocumentCustomColors: 75
%%DocumentData: 34
%%DocumentFonts: 52
%%DocumentMedia: 49-50
%%DocumentNeededFiles: 51
%%DocumentNeededFonts: 52

%%EndPreview 44
%%?EndPrinterQuery: 81
%%EndProcessColor 77
%%EndProcSet 65
%%?EndProcSetQuery 82
%%EndProlog 44-45
%%?EndQuery: 82
%%EndResource 66-67
%%EndResourceListQuery: 82
%%?EndResourceQuery: 83-84
%%EndSetup 45
%%?EndVMStatus: 85
%%EOF 48

document structure and 18

%%DocumentNeededProcSets: 53 error management 7
%%DocumentNeededResources: 5% %Extensions: 35-36

%%DocumentPrinterRequired: 51
%%DocumentProcessColors: 75
%%DocumentProcSets: 53
documents

conforming 11-14

non-conforming 15
%%DocumentSuppliedFiles: 52
%%DocumentSuppliedFonts: 53

%%DocumentSuppliedProcSets: 53

%%DocumentSuppliedResources:
50

102 Index

F

feature inclusion 8
%%For: 36

G

H

header comments (DSC) 16, 25

%%IncludeDocument: 62
%%IncludeFeature: 63
%%IncludeFile: 64
%%IncludeFont: 65
%%lncludeProcSet: 66
%%lncludeResource: 67-71

L

%%LanguagelLevel: 36

N

non-conforming documents 15
n-up printing 9

O

open structuring convention4, 86—
87
%%Operatorintervention: 54
%%OperatorMessage: 54
%%O0rientation: 37

P

%%Page: 47

document structure and 12
page breakout 9
page comments (DSC) 26
page independence 18-19
page management 9-10
page reversal 9
%%PageBoundingBox: 47
%%PageCustomColors: 77
%%PageFiles: 72
%%PageFonts: 72
%%PageMedia: 72-73
%%PageOrder: 37

page independence and 19
%%PageOrientation: 48

general body comments 38-45, 96 o495PageProcessColors: 77
general header comments 32-38, 9tos95PageRequirements: 74
general page comments 46-48, 97 o,95PageResources: 74

general trailer comments 48, 97

%%Pages: 37
%%PageTrailer 48

(25 Sep 92)

parallel printing 8 T
PPD (PostScript printer description)

files 3 %%Title: 38
print logging 5 %%Trailer 48
print management 7-9 parsing and 22
printer rerouting 7 trailer pages 5
printing services 14
procedures section (DSC) 16 U

prologs 16-17

%%ProofMode: 54-55

%!PS-Adobe-3.0 32-33
conforming documents and 11 v
non-conforming documents and o494\Version: 38

15 %%VMlocation: 59
%!PS-Adobe-3.0 Query 79 %%VMusage: 60

Q

query comments 79-85

underlays 10

R

range printing 10
requirement body comment§1-71,
97
requirement header comments 49—
60, 97
requirement page comments 72-74,
97
%%Requirements: 55-59
parsing and 22
resource downloading 6
resource inclusion 6
resource management 6-7
resource optimization 7
restore
page independence and 19
%%RGBCustomColor: 76
%%Routing: 38

S

save
page independence and 19
script 17
setpagedevice
collated printing and 10
document copies and 20
special structuring conventions 88
spool management 5

Index

103

	Contents
	PostScript Language Document Structuring Conventions Spec.
	Using the Document Structuring Conventions
	Document Manager Services
	Spool Management
	Resource Management
	Error Management
	Print Management
	Page Management

	DSC Conformance
	Conforming Documents
	Non-Conforming Documents

	Document Structure Rules
	Prolog
	Script
	Constraints
	Parsing Rules
	Convention Categories
	Comment Syntax Reference

	General Conventions
	General Header Comments
	General Body Comments
	General Page Comments
	General Trailer Comments

	Requirement Conventions
	Requirement Header Comments
	Requirement Body Comments
	Requirement Page Comments

	Color Separation Conventions
	Color Header Comments
	Color Body Comments
	Color Page Comments

	Query Conventions
	Responsibilities
	Query Comments
	Open Structuring Conventions
	The Extension Mechanism
	Special Structuring Conventions

	Changes Since Earlier Versions
	Changes Since Version 1.0
	Changes Since Version 2.1

	DSC Version 3.0 Summary
	General Conventions
	Requirement Conventions
	Color Separation Conventions
	Query Conventions

	Index

